对Transformer中的Attention(注意力机制)的一点点探索


摘要:本文试图对 Transformer 中的 Attention 机制进行一点点探索。并就 6 个问题深入展开。


✅ NLP 研 1 选手的学习笔记

简介:小王,NPU,2023级,计算机技术
研究方向:文本生成、摘要生成


文章目录

  • 一、为啥要写这篇博客?
  • 二、一些灵魂问题,能回答上吗?
    • 1. Attention 的输入是什么?输出是什么?
    • 2. Attention 中的输入(input)与 “Q、K、V” 是啥关系?
    • 3. Attention 中的 Q、K、V 分别有什么含义?
    • 4. Attention 的计算流程是怎么样的?
    • 5. 多头 Attention 有什么用?
    • 6. 请介绍一下 Cross-Attention?
  • 三、补充说明


一、为啥要写这篇博客?

调侃:因为最近在做关于 Transformer 模型的魔改,但好久没有弄这个了,已经有点记不清 Attention 的细节,今天来重温一下。借助 6 个问题来重点深入分析 Attention 机制。

● 下面这一段代码是 T5-base 的 Attention 的源码,后面我将对其进行细抠和分析。因为很多变量其实我们用不到,太冗长了,我在后面贴了一段删减版的 T5Attention 代码(不影响实际效果)。

class T5Attention(nn.Module):def __init__(self, config: T5Config, has_relative_attention_bias=False):super().__init__()self.is_decoder = config.is_decoderself.has_relative_attention_bias = has_relative_attention_biasself.relative_attention_num_buckets = config.relative_attention_num_bucketsself.relative_attention_max_distance = config.relative_attention_max_distanceself.d_model = config.d_modelself.key_value_proj_dim = config.d_kvself.n_heads = config.num_headsself.dropout = config.dropout_rateself.inner_dim = self.n_heads * self.key_value_proj_dim# Mesh TensorFlow initialization to avoid scaling before softmaxself.q = nn.Linear(self.d_model, self.inner_dim, bias=False)self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)if self.has_relative_attention_bias:self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)self.pruned_heads = set()self.gradient_checkpointing = Falsedef prune_heads(self, heads):if len(heads) == 0:returnheads, index = find_pruneable_heads_and_indices(heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads)# Prune linear layersself.q = prune_linear_layer(self.q, index)self.k = prune_linear_layer(self.k, index)self.v = prune_linear_layer(self.v, index)self.o = prune_linear_layer(self.o, index, dim=1)# Update hyper paramsself.n_heads = self.n_heads - len(heads)self.inner_dim = self.key_value_proj_dim * self.n_headsself.pruned_heads = self.pruned_heads.union(heads)@staticmethoddef _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):"""Adapted from Mesh Tensorflow:https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593Translate relative position to a bucket number for relative attention. The relative position is defined asmemory_position - query_position, i.e. the distance in tokens from the attending position to the attended-toposition. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets forsmall absolute relative_position and larger buckets for larger absolute relative_positions. All relativepositions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.This should allow for more graceful generalization to longer sequences than the model has been trained onArgs:relative_position: an int32 Tensorbidirectional: a boolean - whether the attention is bidirectionalnum_buckets: an integermax_distance: an integerReturns:a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)"""relative_buckets = 0if bidirectional:num_buckets //= 2relative_buckets += (relative_position > 0).to(torch.long) * num_bucketsrelative_position = torch.abs(relative_position)else:relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))# now relative_position is in the range [0, inf)# half of the buckets are for exact increments in positionsmax_exact = num_buckets // 2is_small = relative_position < max_exact# The other half of the buckets are for logarithmically bigger bins in positions up to max_distancerelative_position_if_large = max_exact + (torch.log(relative_position.float() / max_exact)/ math.log(max_distance / max_exact)* (num_buckets - max_exact)).to(torch.long)relative_position_if_large = torch.min(relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1))relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)return relative_bucketsdef compute_bias(self, query_length, key_length, device=None):"""Compute binned relative position bias"""if device is None:device = self.relative_attention_bias.weight.devicecontext_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]relative_position = memory_position - context_position  # shape (query_length, key_length)relative_position_bucket = self._relative_position_bucket(relative_position,  # shape (query_length, key_length)bidirectional=(not self.is_decoder),num_buckets=self.relative_attention_num_buckets,max_distance=self.relative_attention_max_distance,)values = self.relative_attention_bias(relative_position_bucket)  # shape (query_length, key_length, num_heads)values = values.permute([2, 0, 1]).unsqueeze(0)  # shape (1, num_heads, query_length, key_length)return valuesdef forward(self,hidden_states,mask=None,key_value_states=None,position_bias=None,past_key_value=None,layer_head_mask=None,query_length=None,use_cache=False,output_attentions=False,):"""Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states)."""# Input is (batch_size, seq_length, dim)# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)batch_size, seq_length = hidden_states.shape[:2]real_seq_length = seq_lengthif past_key_value is not None:assert (len(past_key_value) == 2), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"real_seq_length += past_key_value[0].shape[2] if query_length is None else query_lengthkey_length = real_seq_length if key_value_states is None else key_value_states.shape[1]def shape(states):"""projection"""return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)def unshape(states):"""reshape"""return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)def project(hidden_states, proj_layer, key_value_states, past_key_value):"""projects hidden states correctly to key/query states"""if key_value_states is None:# self-attn# (batch_size, n_heads, seq_length, dim_per_head)hidden_states = shape(proj_layer(hidden_states))elif past_key_value is None:# cross-attn# (batch_size, n_heads, seq_length, dim_per_head)hidden_states = shape(proj_layer(key_value_states))if past_key_value is not None:if key_value_states is None:# self-attn# (batch_size, n_heads, key_length, dim_per_head)hidden_states = torch.cat([past_key_value, hidden_states], dim=2)else:# cross-attnhidden_states = past_key_valuereturn hidden_states# get query statesquery_states = shape(self.q(hidden_states))  # (batch_size, n_heads, seq_length, dim_per_head)# get key/value stateskey_states = project(hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None)value_states = project(hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None)# compute scoresscores = torch.matmul(query_states, key_states.transpose(3, 2))  # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9if position_bias is None:if not self.has_relative_attention_bias:position_bias = torch.zeros((1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype)if self.gradient_checkpointing and self.training:position_bias.requires_grad = Trueelse:position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device)# if key and values are already calculated# we want only the last query position biasif past_key_value is not None:position_bias = position_bias[:, :, -hidden_states.size(1) :, :]if mask is not None:mask = mask.to('cuda')position_bias = position_bias + mask  # (batch_size, n_heads, seq_length, key_length)if self.pruned_heads:mask = torch.ones(position_bias.shape[1])mask[list(self.pruned_heads)] = 0position_bias_masked = position_bias[:, mask.bool()]else:position_bias_masked = position_biasscores += position_bias_maskedattn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)  # (batch_size, n_heads, seq_length, key_length)attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)  # (batch_size, n_heads, seq_length, key_length)# Mask heads if we want toif layer_head_mask is not None:attn_weights = attn_weights * layer_head_maskattn_output = unshape(torch.matmul(attn_weights, value_states))  # (batch_size, seq_length, dim)attn_output = self.o(attn_output)present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else Noneoutputs = (attn_output,) + (present_key_value_state,) + (position_bias,)if output_attentions:outputs = outputs + (attn_weights,)return outputs

● 删减版的 T5Attention 代码(不影响后文讲解),后文说的 “代码” 都是说的这个:

class T5Attention(nn.Module):def __init__(self, config: T5Config):super().__init__()self.is_decoder = config.is_decoderself.d_model = config.d_modelself.key_value_proj_dim = config.d_kvself.n_heads = config.num_headsself.dropout = config.dropout_rateself.inner_dim = self.n_heads * self.key_value_proj_dim# Mesh TensorFlow initialization to avoid scaling before softmaxself.q = nn.Linear(self.d_model, self.inner_dim, bias=False)self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)def forward(self,hidden_states,key_value_states=None,position_bias=None,past_key_value=None,layer_head_mask=None,query_length=None,use_cache=False,output_attentions=False,):def shape(states):return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)def unshape(states):return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)# Input is (batch_size, seq_length, dim)batch_size, seq_length = hidden_states.shape[:2]# get query statesquery_states = shape(self.q(hidden_states))  # (batch_size, n_heads, seq_length, dim_per_head)# get key/value stateskey_states = shape(self.k(hidden_states))  # (batch_size, n_heads, seq_length, dim_per_head)value_states = shape(self.v(hidden_states))  # (batch_size, n_heads, seq_length, dim_per_head)# compute scoresscores = torch.matmul(query_states, key_states.transpose(3, 2))  # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)  # (batch_size, n_heads, seq_length, key_length)attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)  # (batch_size, n_heads, seq_length, key_length)attn_output = unshape(torch.matmul(attn_weights, value_states))  # (batch_size, seq_length, dim)attn_output = self.o(attn_output)return attn_output 

二、一些灵魂问题,能回答上吗?

  1. Attention 的输入(input)是什么?输出(output)是什么?
  2. Attention 中的输入(input)与 “Q、K、V” 是啥关系?
  3. Attention 中的 Q、K、V 分别有什么含义?
  4. Attention 的计算流程是怎么样的?
  5. 多头 Attention 有什么用?
  6. 请介绍一下 Cross-Attention?

注:后面所有模型的 config 均是 T5 模型的默认配置,写出来是为了方便解释。


1. Attention 的输入是什么?输出是什么?

  答:Attention 的输入(input)是文本特征 hidden_states,形式上是一个批次(batch_size)的特征张量。假如批次(batch_size)是 4,最大文本处理长度(max_length)为 512,特征维度(d_model)为 768,则输入 hidden_states 的形状即为 (4, 512, 768)。输出也是一个张量,形状和输出一样。


2. Attention 中的输入(input)与 “Q、K、V” 是啥关系?

  答:我首先解释一下 “输入(input)与它们仨的关系”。将上面的代码截取出下面一段。因为 self.qself.kself.v 分别是三个不同nn.Linear(self.d_model, self.inner_dim, bias=False),即线性层,其中 self.d_model 为通用特征维度 768 (就是各个 Attention 模块传递的时候需要统一的特征维度);self.inner_dim 为 Attention 内部特征维度 768(就是该 Attention 模块内部用到的特征维度)。故 nn.Linear(self.d_model, self.inner_dim, bias=False) 即为 768×768 的神经网络,并包含偏置 nn.Linear(768, 768, bias=False)
  所以,输入(input)和 “Q、K、V” 之间存在一种映射关系。输入(input)通过三个不同的 768×768 的神经网络,映射成了三个不一样的特征张量,而这三个不一样的特征张量的形状依然为 (4, 512, 768) (这里承接了第一问的 “假如”,后面几问都是这样的)。

# get query states
query_states = shape(self.q(hidden_states))  # (batch_size, n_heads, seq_length, dim_per_head)# get key/value states
key_states = shape(self.k(hidden_states))  # (batch_size, n_heads, seq_length, dim_per_head)
value_states = shape(self.v(hidden_states))  # (batch_size, n_heads, seq_length, dim_per_head)

  这里外带解释一下 shape() 是用来干嘛的。它是一个 “形状转换器”,把一个张量转换为 “多头张量”,并不改变里面的内容,只改变形状。通俗一点来讲就是把一个张量扩充一个维度,并将张量中的所有项分摊到这个维度中。

def shape(states):return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)

  举个例子:假如输入(input)是一个形状为 (4, 512, 768) 的张量,即 hidden_states = Tensor{(4, 512, 768)}。假如 Q = self.q(hidden_states) = Tensor{(4, 512, 768)}(注意 self.q(hidden_states)hidden_states)。然后 query_states = shape(Q) = Q.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) = Q.view(4, -1, 12, 64).transpose(1, 2) = Tensor{(4, 512, 12, 64)}.transpose(1, 2) = Tensor{(4, 12, 512, 64)}
  其中,self.n_heads 表示多头注意力机制中头的数量,T5 模型默认是 12self.key_value_proj_dim 表示每个头里面的特征维度,T5 模型默认是 64


3. Attention 中的 Q、K、V 分别有什么含义?

  答:为了便于解释,下面以李宏毅课程中的 self-attention 例子来展开,先走一遍计算流程:
  假如输入(input)是一句只有四个字的句子:“你好世界”,那我们进行分词(tokenizer)后会得到 [“你”, “好”, “世”, “界”]。(为了便于解释,后面我省去了 Embedding 操作,直接进行 Attention)接着呢, q 1 q^1 q1 = self.q(“你”) k 1 k^1 k1 = self.k(“你”) v 1 v^1 v1 = self.v(“你”) q 2 q^2 q2 = self.k(“好”) k 2 k^2 k2 = self.k(“好”) v 2 v^2 v2 = self.v(“好”);依次类推…
  接着再计算 α 1 , 1 \alpha_{1,1} α1,1= q 1 × k 1 q^1\times k^1 q1×k1 α 1 , 2 \alpha_{1,2} α1,2= q 1 × k 2 q^1\times k^2 q1×k2;依次类推…(需注意的是 α x , 随意 \alpha_{x,随意} αx,随意 均是对第 x x x 个字进行处理。另外,常规的 Attention 还有除以 d \sqrt{d} d 的操作,这里为了方便讲解,省去了。后面的公式会再加上的)
  然后将 α 1 , 1 \alpha_{1,1} α1,1 α 1 , 2 \alpha_{1,2} α1,2 α 1 , 3 \alpha_{1,3} α1,3 α 1 , 4 \alpha_{1,4} α1,4 进行归一化,即代码里面的 nn.functional.softmax() 操作,得到 α ^ 1 , 1 \hat \alpha_{1,1} α^1,1 = α 1 , 1 ∑ i n = 4 α 1 , i \frac{\alpha_{1,1}}{\sum_{i}^{n=4}\alpha_{1,i}} in=4α1,iα1,1 α ^ 1 , 2 \hat \alpha_{1,2} α^1,2 = α 1 , 2 ∑ i n = 4 α 1 , i \frac{\alpha_{1,2}}{\sum_{i}^{n=4}\alpha_{1,i}} in=4α1,iα1,2;依次类推…
  接着计算 b 1 b^1 b1 = ∑ j n = 4 α ^ 1 , j × v j \sum_{j}^{n=4}\hat \alpha_{1,j}\times v^j jn=4α^1,j×vj = α ^ 1 , 1 × v 1 + α ^ 1 , 2 × v 2 + α ^ 1 , 3 × v 3 + α ^ 1 , 4 × v 4 \hat \alpha_{1,1} \times v^1 + \hat \alpha_{1,2} \times v^2 + \hat \alpha_{1,3} \times v^3+ \hat \alpha_{1,4} \times v^4 α^1,1×v1+α^1,2×v2+α^1,3×v3+α^1,4×v4
在这里插入图片描述
  以上的计算是针对 b 1 b^1 b1 的计算。接下来还要进行 b 2 b^2 b2 b 3 b^3 b3 b 4 b^4 b4 的计算。计算过程都差不多,接下来就只介绍 b 1 b^1 b1 的计算了:(注意,上面图中的 α ^ \hat \alpha α^ 和下图中的 α ′ \alpha' α 表示都是同一个意思。还有就是下图的 a 1 a_1 a1 a 2 a_2 a2 a 3 a_3 a3 a 4 a_4 a4 可以分别理解为 “你”、“好”、“世” 和 “界” 四个字)
   α 2 , 1 \alpha_{2,1} α2,1= q 2 × k 1 q^2\times k^1 q2×k1 α 2 , 2 \alpha_{2,2} α2,2= q 2 × k 2 q^2\times k^2 q2×k2;依次类推…
   α ^ 2 , 1 \hat \alpha_{2,1} α^2,1 = α 2 , 1 ∑ i n = 4 α 2 , i \frac{\alpha_{2,1}}{\sum_{i}^{n=4}\alpha_{2,i}} in=4α2,iα2,1 α ^ 2 , 2 \hat \alpha_{2,2} α^2,2 = α 2 , 2 ∑ i n = 4 α 2 , i \frac{\alpha_{2,2}}{\sum_{i}^{n=4}\alpha_{2,i}} in=4α2,iα2,2;依次类推…
   b 2 b^2 b2 = ∑ j n = 4 α ^ 2 , j × v j \sum_{j}^{n=4}\hat \alpha_{2,j}\times v^j jn=4α^2,j×vj = α ^ 2 , 1 × v 1 + α ^ 2 , 2 × v 2 + α ^ 2 , 3 × v 3 + α ^ 2 , 4 × v 4 \hat \alpha_{2,1} \times v^1 + \hat \alpha_{2,2} \times v^2 + \hat \alpha_{2,3} \times v^3+ \hat \alpha_{2,4} \times v^4 α^2,1×v1+α^2,2×v2+α^2,3×v3+α^2,4×v4
在这里插入图片描述
  最后,经过一些计算,得到的 b 1 b^{1} b1 b 2 b^2 b2 b 3 b^3 b3 b 4 b^4 b4 即分别是 “你”、“好”、“世” 和 “界” 的输出(output)。
  乍一看,好像就那样,不就是把每个字进行三次不同的神经网络映射,然后每个字得到三个不同的副本“Q、K、V”,接着将每个字的 “副本Q” 与 自身以及其他字的 “副本K” 进行相乘,再将结果归一化,得到 “注意力分布”,然后再将这个 “注意力分布” 与自身以及其他字的 “副本V” 进行相乘,即得到每个字的 “注意力分数”。
  OK,讲完计算流程后,现在咱们来一起深剖 Q、K、V 的含义 !
  我们这样想,假如我现在来计算 [“你”, “好”, “世”, “界”] 中 “世” 字的 “注意力分数”。那么,Q 就代表我们读到的该字的一种 “基本意义”,我们能自然而然的想到 “世界、世代、世纪、出世、逝世、人世间” 等等;而 K 则代表在整个句子(或整篇文章)里面该字更倾向的含义——> “世界、人世间”等等(因为每个字的 K 会与其他字的 Q 进行联系计算,梯度更新时,K 的网络会进行更新,就会稍微加深 “联系”);最后,V 就要抽象一点理解了,我们可以把它理解为某一个人(不同人,他的阅历不同,看到这个字就会有不同的感受)的脑海里对于这个字的 “感觉”,可能是 “平淡的”,也可能是 “温暖的”、“喜爱的”、“反感的” 等等,或许还会有薛之谦的 “世界和平” 的感觉,反正代表了一种引申意。(这段解释只是笔者个人理解后的想法哈,在后面的 Cross-Attention 机制我会换一种观点来理解
  我没做过实验,但是我推断,当对某一文本数据集进行学习时,“Q、K、V” 的三个网络,应该 “V的网络” 更新得最慢,因为它更像是一种 “底层价值观网络”。而 “Q的网络” 更新得最快,因为不同的句子,相同的字出现不同的含义的频率很高。
  最后,我在这里埋一个伏笔,“注意力分布” 就是 Q的各个字 与 K的各个字 之间两两的一种 “关联性分数”,关联性越强,分数越高。我会在后面的计算流程再一次提到这一点。

  OK,理解完 Q、K、V 的含义后,我们再简单来举个例子,假如我们输入下面这句话给 T5 模型(输入给 ChatGPT 也是一样的),最后模型的输出会是什么呢?怎么推理的呢?

我刚买了一个苹果,感觉它非常好吃。请问刚刚我吃了什么?

  显然,T5 模型的注意力会更多地放在 “苹果” 和 “它” 两字上面,它俩的 “q 和 k” 相乘的 “注意力分布” 将会很大,因为 “它” 被我吃了,而 “它” 与 “苹果” 联系性最强,故答案是 “苹果”。


4. Attention 的计算流程是怎么样的?

  答:虽然我在 “3. Attention 中的 Q、K、V 分别有什么含义?” 里已经介绍过了 Attention 的计算流程,但那只是一部分。完整的计算流程还得看代码(超简化版,包含所有的关键步骤):

def forward(self, hidden_states, key_value_states=None, position_bias=None, past_key_value=None, layer_head_mask=None, query_length=None, use_cache=False, output_attentions=False,):def shape(states):  # 作用: 将某一个张量的形状从 (batch_size, seq_length, d_model) 转化为 (batch_size, n_heads, seq_length, dim_per_head)return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)def unshape(states):  # 作用: 将某一个张量的形状从 (batch_size, n_heads, seq_length, dim_per_head) 转化为 (batch_size, seq_length, d_model)return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)batch_size, seq_length = hidden_states.shape[:2]  # hidden_states 是一个张量 {Tensor(4, 512, 768)}query_states = shape(self.q(hidden_states))  # 计算出 Q, 并转化为多头, 得到 {Tensor(4, 12, 512, 64)}key_states = shape(self.k(hidden_states))  # 计算出 K, 并转化为多头, 得到 {Tensor(4, 12, 512, 64)}value_states = shape(self.v(hidden_states))  # 计算出 V, 并转化为多头, 得到 {Tensor(4, 12, 512, 64)}scores = torch.matmul(query_states, key_states.transpose(3, 2))  # 计算 “注意力分布” {Tensor()}, {Tensor(4, 12, 512, 64)} × {Tensor(4, 12, 64, 512)} → {Tensor(4, 12, 512, 512)}attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)  # softmax操作(即归一化操作)attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)  # dropout操作(防止过拟合)attn_output = unshape(torch.matmul(attn_weights, value_states))  # 先进行矩阵相乘 {Tensor(4, 12, 512, 512)} × {Tensor(4, 12, 512, 64)} → {Tensor(4, 12, 512, 64)}, 再将多头特征融合起来. {Tensor(4, 12, 512, 64)} → {Tensor(4, 512, 768)}attn_output = self.o(attn_output)  # 最后经过一个线性层, 得到的结果仍然是一个张量 {Tensor(4, 512, 768)}return attn_output 

  注意!!!! 我为了便于解释,并着重讲解 Attention 机制,上面的代码便省略了 掩码(Mask)的操作 以及 相对位置信息的嵌入(position_bias),后面有机会,我再写篇博客讲讲它们。
  简单来说,Attention 的所有计算都是在矩阵的基础上(也可以说是在张量的基础上进行的),并没有像我之前写的那样一个一个地计算: α 1 , 1 \alpha_{1,1} α1,1= q 1 × k 1 q^1\times k^1 q1×k1 α 1 , 2 \alpha_{1,2} α1,2= q 1 × k 2 q^1\times k^2 q1×k2,但是计算结果都是一样的,只不过矩阵计算更方便,也能够加快计算速度(其中 d \sqrt{d} d 一般就是模型默认的特征维度 d_model,即 768):

a = q × k ⊺ d = [ q 1 q 2 q 3 q 4 ] × [ k 1 k 2 k 3 k 4 ] d = [ a 1 , 1 a 1 , 2 ⋯ a 1 , 4 a 2 , 1 a 2 , 2 ⋯ a 2 , 4 ⋮ ⋮ ⋱ ⋮ a 4 , 1 a 4 , 2 ⋯ a 4 , 4 ] \boldsymbol{a}=\frac{\boldsymbol{q}\times \boldsymbol{k}^{\intercal}}{\sqrt{d}}=\frac{\\ \left[ \begin{matrix} q_1 \\ q_2 \\ q_3 \\ q_4\end{matrix}\right] \times \left[ \begin{matrix} k_1\,\, k_2 \,\,k_3 \,\,k_4\end{matrix}\right] \\}{\sqrt{d}} = \left[ \begin{matrix} a_{1,1}& a_{1,2}& \cdots& a_{1,4}\\ a_{2,1}& a_{2,2}& \cdots& a_{2,4}\\ \vdots& \vdots& \ddots& \vdots\\ a_{4,1}& a_{4,2}& \cdots& a_{4,4}\\ \end{matrix} \right] a=d q×k=d q1q2q3q4 ×[k1k2k3k4]= a1,1a2,1a4,1a1,2a2,2a4,2a1,4a2,4a4,4

α = softmax ( a ) = [ a 1 , 1 ′ a 1 , 2 ′ ⋯ a 1 , 4 ′ a 2 , 1 ′ a 2 , 2 ′ ⋯ a 2 , 4 ′ ⋮ ⋮ ⋱ ⋮ a 4 , 1 ′ a 4 , 2 ′ ⋯ a 4 , 4 ′ ] , a i , j ′ = exp ⁡ ( a i , j ) ∑ j = 1 n = 4 exp ⁡ ( a i , j ) \boldsymbol{\alpha }=\text{softmax} \left( \boldsymbol{a} \right) =\left[ \begin{matrix} a'_{1,1}& a'_{1,2}& \cdots& a'_{1,4}\\ a'_{2,1}& a'_{2,2}& \cdots& a'_{2,4}\\ \vdots& \vdots& \ddots& \vdots\\ a'_{4,1}& a'_{4,2}& \cdots& a'_{4,4}\\ \end{matrix} \right] ,\quad a'_{i,j}=\frac{\exp \left( a_{i,j} \right)}{\sum_{j=1}^{n=4}{\exp}\left( a_{i,j} \right)} α=softmax(a)= a1,1a2,1a4,1a1,2a2,2a4,2a1,4a2,4a4,4 ,ai,j=j=1n=4exp(ai,j)exp(ai,j)
b = α × v = [ a 1 , 1 ′ a 1 , 2 ′ ⋯ a 1 , 4 ′ a 2 , 1 ′ a 2 , 2 ′ ⋯ a 2 , 4 ′ ⋮ ⋮ ⋱ ⋮ a 4 , 1 ′ a 4 , 2 ′ ⋯ a 4 , 4 ′ ] × [ v 1 v 2 v 3 v 4 ] = [ b 1 b 2 b 3 b 4 ] \boldsymbol{b}=\boldsymbol{\alpha }\times \boldsymbol{v} = \left[ \begin{matrix} a'_{1,1}& a'_{1,2}& \cdots& a'_{1,4}\\ a'_{2,1}& a'_{2,2}& \cdots& a'_{2,4}\\ \vdots& \vdots& \ddots& \vdots\\ a'_{4,1}& a'_{4,2}& \cdots& a'_{4,4}\\ \end{matrix} \right] \times \left[ \begin{matrix} v_1 \\ v_2 \\ v_3 \\ v_4\end{matrix}\right] = \left[ \begin{matrix} b_1 \\ b_2 \\ b_3\\b_4\end{matrix}\right] b=α×v= a1,1a2,1a4,1a1,2a2,2a4,2a1,4a2,4a4,4 × v1v2v3v4 = b1b2b3b4
  代码里在计算出上述的 b \boldsymbol{b} b 后,其实还有 dropout 的操作,这是为了防止过拟合。另外最后还要经过一个线性层得到最终的输出 output \text{output} output = self.o( b \boldsymbol{b} b ),其中 self.o() = nn.Linear(768, 768, bias=False)。至于为什么要加这个线性层呢?或许这就是神经网络的玄学了,层数多一点,记忆的东西更深刻一点?…
  OK,在这里我揭晓刚刚埋的伏笔。从矩阵 α \boldsymbol{\alpha } α 的形状可以看出,它是 4×4 的,也就是说,它就是 Q版本的[“你”, “好”, “世”, “界”] 与 K版本的[“你”, “好”, “世”, “界”] 的各个字之间两两的一种 “关联性分数”。如果 Q版本的[“你”, “好”, “世”, “界”] "世"字 对 K版本的[“你”, “好”, “世”, “界”]的"界"字 在模型看来很有关系,那么 a 3 , 4 ′ a'_{3,4} a3,4 相较其他 “注意力分布”的分数 将会比较大。


5. 多头 Attention 有什么用?

  答:先讲讲多头 Attention 的计算流程吧:就是我们把原本一个句子(比如刚刚说的“你好世界”)中的某个字(比如“世”字)的 768 维的特征(即 [1.2563, -5.2934, 0.0567, -0.8004, 3.0503, …, 0.2502] ←我随便写的,总共 768 个表示特征的数字)分成 N 个子特征(假如 N = 12,则子特征的维度即为 head_d_model = 768/12 = 64),就得到了 N 个包含 768/N 个特征数的子特征。
  这个原理和 计算机视觉(CV)领域的卷积神经核的原理 类似吧,我感觉,都是为了让特征的计算更 “细腻” 或者更 “粗糙” 。不同的卷积核大小,3×3 或者 5×5 或者 1×1 等等,卷积得到的特征是不一样的,显然,卷积核尺寸越大卷积得到的特征越 “精”;卷积核尺寸越小卷积得到的特征越 “泛”。那么,多头的头数越多,那么文本在进行 “注意力分布” 计算时,某一字就能被划分成更多层的含义(比如 12 层含义),然后与另一个同样具有多层含义的字进行乘积计算,这样得到的多个特征会更 “全面” 一点。


6. 请介绍一下 Cross-Attention?

  答:Cross-Attention 即是交叉注意力机制。之前讲的所有例子其实都是 Self-Attention 机制,也就是某一段文本与其自身进行 “自注意力” 的计算,并没有涉及到一段文本与另一段文本的 “交叉注意力” 的计算。
  我们先来理一下 Cross-Attention 的计算流程
  假如我们用下面的 句子① 句子② 进行 Cross-Attention(注意!!!!先后关系很重要,谁在前就是前者,谁在后就是后者,谁对的谁,顺序很重要)。

① 李华英语考试不及格,告诉妈妈他出去找同学玩了。
② 小明去超市门口和李华汇合,他俩说了好多话。

  那么, q \boldsymbol q q 就是 句子① 经过 self.q() 得到的, k \boldsymbol k k v \boldsymbol v v 就是 句子② 分别经过 self.k()self.v() 得到的。其中,句子① 的长度为 23,句子② 的长度为 21。那么:
a = q × k ⊺ d = [ q 1 q 2 ⋮ q 23 ] × [ k 1 k 2 ⋯ k 21 ] d = [ a 1 , 1 a 1 , 2 ⋯ a 1 , 21 a 2 , 1 a 2 , 2 ⋯ a 2 , 21 ⋮ ⋮ ⋱ ⋮ a 23 , 1 a 23 , 2 ⋯ a 23 , 21 ] ∈ R 23 × 21 \boldsymbol{a}=\frac{\boldsymbol{q}\times \boldsymbol{k}^{\intercal}}{\sqrt{d}}=\frac{\\ \left[ \begin{matrix} q_1 \\ q_2 \\ \vdots \\ q_{23}\end{matrix}\right] \times \left[ \begin{matrix} k_1\,\, k_2 \,\, \cdots \,\,k_{21}\end{matrix}\right] \\}{\sqrt{d}} = \left[ \begin{matrix} a_{1,1}& a_{1,2}& \cdots& a_{1,21}\\ a_{2,1}& a_{2,2}& \cdots& a_{2,21}\\ \vdots& \vdots& \ddots& \vdots\\ a_{23,1}& a_{23,2}& \cdots& a_{23,21}\\ \end{matrix} \right] \in \mathbb{R}^{23 \times 21} a=d q×k=d q1q2q23 ×[k1k2k21]= a1,1a2,1a23,1a1,2a2,2a23,2a1,21a2,21a23,21 R23×21

α = softmax ( a ) = [ a 1 , 1 ′ a 1 , 2 ′ ⋯ a 1 , 21 ′ a 2 , 1 ′ a 2 , 2 ′ ⋯ a 2 , 21 ′ ⋮ ⋮ ⋱ ⋮ a 23 , 1 ′ a 23 , 2 ′ ⋯ a 23 , 21 ′ ] , a i , j ′ = exp ⁡ ( a i , j ) ∑ j = 1 n = 21 exp ⁡ ( a i , j ) \boldsymbol{\alpha }=\text{softmax} \left( \boldsymbol{a} \right) =\left[ \begin{matrix} a'_{1,1}& a'_{1,2}& \cdots& a'_{1,21}\\ a'_{2,1}& a'_{2,2}& \cdots& a'_{2,21}\\ \vdots& \vdots& \ddots& \vdots\\ a'_{23,1}& a'_{23,2}& \cdots& a'_{23,21}\\ \end{matrix} \right] ,\quad a'_{i,j}=\frac{\exp \left( a_{i,j} \right)}{\sum_{j=1}^{n=21}{\exp}\left( a_{i,j} \right)} α=softmax(a)= a1,1a2,1a23,1a1,2a2,2a23,2a1,21a2,21a23,21 ,ai,j=j=1n=21exp(ai,j)exp(ai,j)
b = α × v = [ a 1 , 1 ′ a 1 , 2 ′ ⋯ a 1 , 21 ′ a 2 , 1 ′ a 2 , 2 ′ ⋯ a 2 , 21 ′ ⋮ ⋮ ⋱ ⋮ a 23 , 1 ′ a 23 , 2 ′ ⋯ a 23 , 21 ′ ] × [ v 1 v 2 ⋮ v 21 ] = [ b 1 b 2 ⋮ b 23 ] ∈ R 23 × 1 \boldsymbol{b}=\boldsymbol{\alpha }\times \boldsymbol{v} = \left[ \begin{matrix} a'_{1,1}& a'_{1,2}& \cdots& a'_{1,21}\\ a'_{2,1}& a'_{2,2}& \cdots& a'_{2,21}\\ \vdots& \vdots& \ddots& \vdots\\ a'_{23,1}& a'_{23,2}& \cdots& a'_{23,21}\\ \end{matrix} \right] \times \left[ \begin{matrix} v_1 \\ v_2 \\ \vdots\\ v_{21}\end{matrix}\right] = \left[ \begin{matrix} b_1 \\ b_2 \\ \vdots \\b_{23}\end{matrix}\right] \in \mathbb{R}^{23 \times 1} b=α×v= a1,1a2,1a23,1a1,2a2,2a23,2a1,21a2,21a23,21 × v1v2v21 = b1b2b23 R23×1

  最后再进行 dropout 操作并经过最后一个线性层 self.o() 即得到输出。(注意!!!!虽然我在图中写的是 R 23 × 1 \mathbb{R}^{23 \times 1} R23×1,但其实更严谨的写法是 R 23 × 768 \mathbb{R}^{23 \times 768} R23×768,因为 b 1 b_1 b1 b 2 b_2 b2 b 3 b_3 b3 b 4 b_4 b4 其实都是 768 维的向量。如果再加上 batch_size (= 4 的话),那么就是 R 4 × 23 × 768 \mathbb{R}^{4\times 23 \times 768} R4×23×768

  OK,计算过程理完了。那 Cross-Attention 机制的精髓在哪里呢? 就在对 “Q、K、V” 的分配里。如果是句子①对句子②进行 Cross-Attention(谁对谁,前者后者关系很重要),那么 Q 就是 句子① 经过 self.q() 的映射;K 是 句子② 经过 self.k() 的映射;V 是 句子② 经过 self.v() 的映射。为啥单单 Q 来自于句子①?因为我们是要用句子① 对照着 句子② 进行分析,那么句子①更像是一种查询(Query),而句子②更像是一种 “字典”,这个字典包含了众多的 “键(Key)-值(Value)-对”。我们带着查询(Query),也可以说是带着一种 “询问”,来翻这个 “字典”,一一比对这个 “字典” 里面的各个 “键(Key)”,然后琢磨琢磨其 “值(Value)”——在这里,值(Value)可以理解为字典中对某一个字的详细阐释。(这段解释也只是笔者个人理解后的想法哈,和前面的 (Self-)Attention 机制的理解有点不同
  另外,当我们想用 句子② 对 句子① 进行 Cross-Attention,也可以。只不过中间得到的 “注意力分布矩阵” 的大小会发生变化,变为 R 21 × 23 \mathbb{R}^{21 \times 23} R21×23,最后 b \boldsymbol{b} b 的大小也会变为 R 21 × 1 \mathbb{R}^{21 \times 1} R21×1

  最后,我们再来看看 Cross-Attention 的代码吧,还是用上 T5 模型的代码进行演示(简化版):

def forward(self, hidden_states, key_value_states=None, position_bias=None, past_key_value=None, layer_head_mask=None, query_length=None, use_cache=False, output_attentions=False,):def shape(states):  # 作用: 将某一个张量的形状从 (batch_size, seq_length, d_model) 转化为 (batch_size, n_heads, seq_length, dim_per_head)return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)def unshape(states):  # 作用: 将某一个张量的形状从 (batch_size, n_heads, seq_length, dim_per_head) 转化为 (batch_size, seq_length, d_model)return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)batch_size, seq_length = hidden_states.shape[:2]  # hidden_states 是一个张量 {Tensor(4, 512, 768)}query_states = shape(self.q(hidden_states))  # 计算出 Q, 并转化为多头, 得到 {Tensor(4, 12, 512, 64)}key_states = shape(self.k(key_value_states))  # 计算出 K, 并转化为多头, 得到 {Tensor(4, 12, 512, 64)}value_states = shape(self.v(key_value_states))  # 计算出 V, 并转化为多头, 得到 {Tensor(4, 12, 512, 64)}scores = torch.matmul(query_states, key_states.transpose(3, 2))  # 计算 “注意力分布” {Tensor()}, {Tensor(4, 12, 512, 64)} × {Tensor(4, 12, 64, 512)} → {Tensor(4, 12, 512, 512)}attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)  # softmax操作(即归一化操作)attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)  # dropout操作(防止过拟合)attn_output = unshape(torch.matmul(attn_weights, value_states))  # 先进行矩阵相乘 {Tensor(4, 12, 512, 512)} × {Tensor(4, 12, 512, 64)} → {Tensor(4, 12, 512, 64)}, 再将多头特征融合起来. {Tensor(4, 12, 512, 64)} → {Tensor(4, 512, 768)}attn_output = self.o(attn_output)  # 最后经过一个线性层, 得到的结果仍然是一个张量 {Tensor(4, 512, 768)}return attn_output 

  与之前 (Self-)Attention 机制的代码差不多,只有 key_statesvalue_states 不同。


三、补充说明

● 若有写得 不对/不妥 的地方,或有疑问,欢迎评论交流。

● 前面买了一些坑,比如。省略了 掩码(Mask)的操作 d \sqrt d d 以及 相对位置信息的嵌入(position_bias) 的说明,后面写博客再补上吧,今天就写到这里…

调侃:感觉…刚上研究生,感觉我好懒,花了三天,才断断续续写完这篇博客哈哈哈哈哈[/手动狗头]…


⭐️ ⭐️ ⭐️

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/74075.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python创建exe文件

1、搭建环境 pip install pyinstaller 2、准备测试代码 exe_test.py import timeprint("hello") print("hello") print("hello") print("hello")time.sleep(5) 注&#xff1a;添加sleep以便在执行exe文件的时候能看到结果 3、生…

linux-OpenSSL升级

1.安装编译所需的安装包 yum install -y gcc make perl zlib-devel 2.从 OpenSSL 官网下载&#xff08;https://www.openssl.org/source/openssl-1.1.1v.tar.gz&#xff09; 注:如果原先版本为1.x.x,升级时还是需要选择1.x.x 3. 编译安装 # 解压tar -xvf openssl-1.1.1v.tar…

[Linux]进程间通信--管道

[Linux]进程间通信–管道 文章目录 [Linux]进程间通信--管道进程间通信的目的实现进程间通信的原理匿名管道匿名管道的通信原理系统接口管道特性管道的协同场景管道的大小 命名管道使用指令创建命名管道使用系统调用创建命名管道 进程间通信的目的 数据传输&#xff1a;一个进…

docker笔记7:Docker微服务实战

1.通过IDEA新建一个普通微服务模块 建Module docker_boot 改POM <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi…

【Maven教程】(四)坐标与依赖:坐标概念,依赖配置、范围、传递性和最佳实践 ~

Maven 坐标与依赖 1️⃣ 什么是Maven 坐标2️⃣ 坐标详解3️⃣ 依赖的配置4️⃣ 依赖范围5️⃣ 传递性依赖6️⃣ 依赖调解7️⃣ 可选依赖8️⃣ 最佳实践8.1 排除依赖8.2 归类依赖8.3 优化依赖 &#x1f33e; 总结 正如前面文章所述&#xff0c;Maven 的一大功能是管理项目依赖…

Spring Boot与Kubernetes:现代云部署的完美组合

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

Python实操 PDF自动识别并提取Excel文件

最近几天&#xff0c;paddleOCR开发了新的功能&#xff0c;通过将图片中的表格提取出来&#xff0c;效果还不错&#xff0c;今天&#xff0c;作者按照步骤测试了一波。 首先&#xff0c;讲下这个工具是干什么用的&#xff1a;它的功能主要是针对一张完整的PDF图片&#xff0c;可…

【MySQL】CRUD (增删改查) 基础

CRUD&#xff08;增删改查&#xff09;基础 一. CRUD二. 新增 &#xff08;Create&#xff09;1. 单行数据 全列插入2. 多行数据 指定列插入 三. 查询&#xff08;Retrieve&#xff09;1. 全列查询2. 指定列查询3. 查询字段为表达式4. 别名5. 去重&#xff1a;DISTINCT6. 排序…

软考备考-程序员-备考笔记

软考备考-程序员-备考笔记 持续更新中》》》》》 更新日志&#xff1a; 刷题软件&#xff1a; 希赛网&#xff1a;每日一练和往年真题是免费的 软考通&#xff1a;完全免费 软考真题&#xff1a;完全免费 51CTO题库:微信小程序&#xff0c;不用下载&#xff0c;顺手 试卷题…

持安科技何艺:基于可信验证的应用访问安全模型 | CCS2023演讲分享

近日&#xff0c;2023CCS成都网络安全大会在成都举办&#xff0c;大会由四川省互联网信息办公室指导&#xff0c;成都市互联网信息办公室、成都高新技术产业开发区管理委员会联合主办&#xff0c;无糖信息技术有限公司承办。 持安科技创始人兼CEO何艺受邀参与2023CCS大会金融安…

【继RNN之后的一项技术】Transfomer 学习笔记

谷歌团队在17年的神作&#xff0c;论文17年6月发布 https://arxiv.org/abs/1706.03762 被NIPS2017收录&#xff0c;目前引用量已经逼近3w。 以下内容参考李沐老师的课程《动⼿学深度学习(Pytorch版)》 简介 注意力 自主性&#xff1a;有目的的搜索某样东西&#xff08;键&…

Xilinx FPGA 超温关机保护

在UG480文档&#xff0c;有关于FPGA芯片热管理的介绍。 首先需要理解XADC中的 Over Temperature&#xff08;OT&#xff09;和User Temperature的关系。片上温度测量用于关键温度警告&#xff0c;也支持自动关机&#xff0c;以防止设备被永久损坏。片上温度测量在预配置和自动关…

C++:类和对象(三)

本文主要介绍初始化列表、static成员、友元、内部类、匿名对象、拷贝对象时编译器的优化。 目录 一、再谈构造函数 1.构造函数体赋值 2.初始化列表 3.explicit关键字 二、static成员 1.概念 2.特性 三、友元 1.友元函数 2.友元类 四、内部类 五、匿名对象 六、拷…

android上架备案公钥和md5获取工具

最近很多公司上架遇到了一个问题&#xff0c;就是要提供app的备案证明&#xff0c;现在android上架都需要备案了&#xff0c;但是我们的证书都是通过工具生成的&#xff0c;哪里知道公钥和md5那些东西呢&#xff1f;无论安卓备案还是ios备案都需要提供公钥和md5。 包括ios的备案…

上海控安携汽车网络安全新研产品出席AUTOSEMO“恒以致远,共创共赢”主题研讨会

8月31日&#xff0c;AUTOSEMO“恒以致远&#xff0c;共创共赢”主题研讨会在天津成功召开。本次大会由中国汽车工业协会软件分会中国汽车基础软件生态标委会&#xff08;简称&#xff1a;AUTOSEMO&#xff09;与天津市西青区人民政府联合主办。现场汇聚了100余位来自产学研政企…

前端如何将后台数组进行等分切割

前端如何切割数组 目标&#xff1a;前端需要做轮播&#xff0c;一屏展示12个&#xff0c;后端返回的数组需要进行切割&#xff0c;将数据以12为一组进行分割 环境&#xff1a;vue3tselement plus 代码如下&#xff1a; function divideArrayIntoEqualParts(array, chunkSiz…

lv3 嵌入式开发-4 linux shell命令(文件搜索、文件处理、压缩)

目录 1 查看文件相关命令 1.1 常用命令 1.2 硬链接和软链接 2 文件搜索相关命令 2.1 查找文件命令 2.2 查找文件内容命令 2.3 其他相关命令 3 文件处理相关命令 3.1 cut 3.2 sed 过滤 3.3 awk 匹配 4 解压缩相关命令 4.1 解压缩文件的意义 4.2 解压缩相关命令 1 …

智慧公厕破解公共厕所管理的“孤岛现象”

在现代社会中&#xff0c;公共厕所是城市管理中的一项重要任务。然而&#xff0c;经常会出现公厕管理的“孤岛现象”&#xff0c;即每个公厕都是独立运作&#xff0c;缺乏统一的管理和监控机制。针对这一问题&#xff0c;智慧公厕的出现为解决公共厕所管理难题带来了新的方案。…

【Unity3D】UI Toolkit样式选择器

1 前言 UI Toolkit简介 中介绍了样式属性&#xff0c;UI Toolkit容器 和 UI Toolkit元素 中介绍了容器和元素&#xff0c;本文将介绍样式选择器&#xff08;Selector&#xff09;&#xff0c;主要包含样式类选择器&#xff08;Class Selector&#xff09;、C# 类选择器&#xf…

C++ 结构体

前文 C中的结构体是一种非常有用的数据类型&#xff0c;它允许我们将不同的变量组合在一起&#xff0c;形成一个自定义的数据结构。 结构体在C中的应用非常广泛&#xff0c;它可以用来表示和管理各种实体、对象或数据的属性。比如&#xff0c;在一个学生管理系统中&#xff0c…