多维时序 | Matlab实现VMD-CNN-LSTM变分模态分解结合卷积神经网络结合长短期记忆神经网络多变量时间序列预测

多维时序 | Matlab实现VMD-CNN-LSTM变分模态分解结合卷积神经网络结合长短期记忆神经网络多变量时间序列预测

目录

    • 多维时序 | Matlab实现VMD-CNN-LSTM变分模态分解结合卷积神经网络结合长短期记忆神经网络多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现VMD-CNN-LSTM变分模态分解结合卷积神经网络结合长短期记忆神经网络多变量时间序列预测;
2.运行环境为Matlab2021及以上;
3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
4.data为数据集,main1_VMD.m、main2_VMD_CNN_LSTM.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;

VMD-CNN-LSTM,即变分模态分解(VMD)结合卷积神经网络(CNN)与长短期记忆网络(LSTM),是一种先进的时间序列预测模型,适用于多变量时间序列预测问题。下面我们将逐一分析这些组件及其组合方式如何工作。

首先,变分模态分解(VMD)是一种信号处理方法,用于将复杂信号分解为一系列具有稀疏性和频带限制的子模态分量。这有助于从原始数据中提取出具有不同频率特性的信息,为后续的机器学习模型提供更丰富的特征。

接着,卷积神经网络(CNN)是一种深度学习模型,特别适用于处理具有网格结构的数据,如图像。在时间序列预测中,CNN可以通过卷积操作提取数据的局部特征,并通过池化操作降低数据的维度,从而减少模型的计算复杂度。

长短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),擅长处理序列数据中的长期依赖关系。通过其门控机制,LSTM可以记忆过去的信息并传递给未来,这对于预测时间序列数据中的长期趋势非常有用。

将VMD、CNN和LSTM三者结合,可以构建一个强大的多变量时间序列预测模型。具体来说,VMD首先对原始数据进行分解,得到一系列子模态分量;然后,CNN对这些子模态分量进行特征提取;最后,LSTM利用这些特征进行时间序列预测。这种组合方式充分利用了三种方法的优点,使得模型在处理复杂时间序列问题时具有更高的预测精度和更强的泛化能力。

程序设计

  • 完整程序和数据获取方式资源处下载Matlab实现VMD-CNN-LSTM变分模态分解结合卷积神经网络结合长短期记忆神经网络多变量时间序列预测。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res =xlsread('data.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);f_ = size(P_train, 1);                  % 输入特征维度%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);% 输入特征sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。% CNN特征提取convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1')  %添加卷积层,641表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题% 池化层maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式% 展开层sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复%平滑层flattenLayer('name','flatten')lstmLayer(25,'Outputmode','last','name','hidden1') dropoutLayer(0.2,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入fullyConnectedLayer(1,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %

参考资料

[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/124571691

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/740451.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大数据开发(HBase面试真题-卷二)

大数据开发(HBase面试真题) 1、HBase读写数据流程?2、HBase的读写缓存?3、在删除HBase中的一个数据的时候,它什么时候真正的进行删除呢?4、HBase的一个region由哪些东西组成?5、HBase的rowkey为…

nginx详解,配置http,https,负载均衡,反向代理,SMTP 代理步骤说明

Nginx 是一款高性能的开源 Web 服务器,同时也可以用作反向代理服务器、负载均衡器、HTTP 缓存、HTTPS 中继、以及作为邮件代理服务器等。以下是 Nginx 可以实现的一些常见用途: 静态内容服务: Nginx 可以用来提供静态内容,比如 HTML、CSS、JavaScript 文件等。 动态内容服务…

鸿蒙Harmony应用开发—ArkTS声明式开发(基础手势:Stepper)

步骤导航器组件,适用于引导用户按照步骤完成任务的导航场景。 说明: 该组件从API Version 8开始支持。后续版本如有新增内容,则采用上角标单独标记该内容的起始版本。 子组件 仅能包含子组件StepperItem。 接口 Stepper(value?: { index?…

View UI清除表单

首先,想要先爆个粗口,这个组件真的好难用,接下来看看清除表单验证吧,和element-ui一点都不一样。 1、清除所有表单:resetFields() this.$nextTick(() > {this.$refs[dateForm].resetFields() }) 其中dateForm为for…

微信小程序小白易入门基础教程1

微信小程序 基本结构 页面配置 页面配置 app.json 中的部分配置,也支持对单个页面进行配置,可以在页面对应的 .json 文件来对本页面的表现进行配置。 页面中配置项在当前页面会覆盖 app.json 中相同的配置项(样式相关的配置项属于 app.js…

【NOIP 2015 普及组】金币

文章目录 题目描述思路分析评价 题目描述 国王将金币作为工资,发放给忠诚的骑士。第一天,骑士收到一枚金币;之后两天(第二天和第三天)里,每天收到两枚金币;之后三天(第四、五、六天…

鸿蒙Harmony应用开发—ArkTS声明式开发(基础手势:RichText)

富文本组件,解析并显示HTML格式文本。 说明: 该组件从API Version 8开始支持。后续版本如有新增内容,则采用上角标单独标记该内容的起始版本。该组件无法根据内容自适应设置宽高属性,需要开发者设置显示布局。 子组件 不包含子组…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的石头剪刀布手势识别系统详解(深度学习模型+UI界面代码+训练数据集)

摘要:本篇博客深入探讨了使用深度学习技术开发石头剪刀布手势识别系统的过程,并分享了完整代码。该系统利用先进的YOLOv8、YOLOv7、YOLOv6、YOLOv5算法,并对这几个版本进行性能对比,如mAP、F1 Score等关键指标。文章详细阐述了YOL…

西门子S7.NET通信库【读】操作详解

在使用西门子PLC进行工业自动化控制的过程中,经常需要与PLC进行数据交换。S7.NET是一款广泛应用于.NET平台的西门子PLC通信库,它为开发者提供了一系列的API函数,以便在C#、VB.NET等.NET语言中轻松实现与西门子PLC的数据交互。本文将详细介绍如…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的远距离停车位检测系统(深度学习代码+UI界面+训练数据集)

摘要:开发远距离停车位检测系统对于提高停车效率具有关键作用。本篇博客详细介绍了如何运用深度学习构建一个远距离停车位检测系统,并提供了完整的实现代码。该系统基于强大的YOLOv8算法,并对比了YOLOv7、YOLOv6、YOLOv5,展示了不…

2.MySQL中的数据类型

整数类型: tinyint(m): 1个字节 范围(-128~127) 常用:性别 0和1表示性别;状态 0和1表示 int(m): 4个字节 范围(-2147483648~2147483647) 常用:数值 数值类型中的长度m是值显示长度,只有字段指定zerofill时有用 例如…

TS271IDT运算放大器芯片中文资料PDF数据手册引脚图图片参数价格功能

产品描述: TS271 是一款低成本、低功耗的单通道运算放大器,设计用于采用单电源或双电源供电。该运算放大器采用意法半导体硅栅CMOS工艺,具有出色的消耗-速度比。该放大器非常适合低功耗应用。 电源可通过引脚 8 和 4 之间连接的电阻器进行外…

解决git clone报错RPC failed; curl 56 GnuTLS recv error (-9)

一、问题描述 ubuntu终端输入:git clone https://github.com/ARISE-Initiative/robomimic.git 报错内容如下: Cloning into robomimic... remote: Enumerating objects: 3751, done. remote: Counting objects: 100% (1235/1235), done. remote: Comp…

2024年【高压电工】考试及高压电工考试总结

题库来源:安全生产模拟考试一点通公众号小程序 高压电工考试考前必练!安全生产模拟考试一点通每个月更新高压电工考试总结题目及答案!多做几遍,其实通过高压电工模拟试题很简单。 1、【单选题】 为了保证频率偏差不超过规定值,必…

webpack一些常用的Loader和Plugin

文章目录 webpack4一些常用的Loader:webpack4一些常用的Plugin:关于webpack5的一些特点:新增特性:修复的问题:内置模块和工具: 关于webpack5的一些内置:内置Loader:内置Plugin: webp…

基于Springboot的预报名管理系统(有报告)。Javaee项目,springboot项目。

演示视频: 基于Springboot的预报名管理系统(有报告)。Javaee项目,springboot项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构&a…

用miniconda建立PyTorch、Keras、TensorFlow三个环境

一、配置清华镜像conda源 由于网络问题,直接使用conda默认的源下载包可能会非常慢。为了解决这个问题,可以配置国内镜像源来加速包的下载。清华大学TUNA协会提供了一个常用的conda镜像源。下面是如何配置清华镜像源的步骤: 1. 配置清华conda…

发布DDD脚手架到Maven仓库,IntelliJ IDEA 配置一下即可使用

作者:小傅哥 博客:https://bugstack.cn 项目:https://gaga.plus 沉淀、分享、成长,让自己和他人都能有所收获!😄 大家好,我是技术UP主,小傅哥。 这篇文章将帮助粉丝伙伴们更高效地利…

使用 Jenkins 和 Spinnaker 构建 Kubernetes CI/CD

无论您是新手还是持续集成和持续交付以及容器化领域的经验丰富,本文都将为您提供设置 Spinnaker 以满足您的软件应用程序交付需求的基本知识。 了解 Jenkins、Spinnaker 和 Kubernetes Kubernetes 和 Jenkins 是两个强大的工具,它们相互配合&#xff0…

Head First Design Patterns - 命令模式

什么是命令模式 命令模式,把请求封装成对象,以便使用不同的请求、队列或者日志请求来参数化其他对象,并支持可撤回的操作。 为什么会有命令模式 假设要设置一个遥控器,遥控器需要控制多个设备,每个设备除了开关&#…