创建旅游景点图数据库Neo4J技术验证

文章目录

  • 创建旅游景点图数据库Neo4J技术验证
    • 写在前面
    • 基础数据建库
      • python3源代码
      • KG效果
      • KG入库效率优化方案
      • PostGreSQL建库

创建旅游景点图数据库Neo4J技术验证

写在前面

本章主要实践内容:
(1)neo4j知识图谱库建库。使用导航poi中的公园、景点两类csv直接建库。
(2)pg建库。携程poi入库tripdata的poibaseinfo表,之后,导航poi中的公园、景点也导入该表。

基础数据建库

python3源代码

以下,实现了csv数据初始导入KG。如果是增量更新,代码需要调整。
另外,星级、旅游时间 是随机生成,不具备任何真实性。

import csv
from py2neo import *
import random
import geohashdef importCSV2NeoKG( graph,csvPath,csvType ):#单纯的查询方法node_Match = NodeMatcher(graph)seasons = ["春季","夏季","秋季","冬季"]stars = ["A","AA","AAA","AAAA","AAAAA"]with open(csvPath,"r",encoding="utf-8") as f:reader = csv.reader(f)datas = list(reader)print("csv连接成功",len(datas))newDatas = []#for data in datas:for k in range(0,len(datas)):data = datas[k]if k==0:newDatas.append(data)else:if datas[k][0]==datas[k-1][0] and datas[k][1]==datas[k-1][1]:#通过 名称+区县 组合判断是否唯一continueelse:newDatas.append(data)print("去除csv中重复记录")nodeCity_new = Node("chengshi",name="北京")cityMatch = node_Match.match("chengshi",name="北京")if cityMatch==None :graph.merge(nodeCity_new,"chengshi","name")for i in range(0,len(newDatas)):nodeQu_new = Node("quxian",name=newDatas[i][1])        rel1 = Relationship(nodeQu_new,"属于",nodeCity_new)graph.merge(rel1,"quxian","name")geoxy_encode = geohash.encode( newDatas[i][4],newDatas[i][3],6 )nodeJingdian = Node(csvType,name=newDatas[i][0],quyu=newDatas[i][1],jianjie=newDatas[i][0],dizhi=newDatas[i][2],zuobiao=geoxy_encode)jingdianMatch = node_Match.match(csvType,name=newDatas[i][0]).where(quyu=newDatas[i][1]).first()if jingdianMatch==None :graph.create(nodeJingdian)rel2 = Relationship(nodeJingdian,"位于",nodeQu_new)graph.create(rel2)nodeTime = Node("traveltime",time=random.choice(seasons))#graph.create(nodeTime)rel3 = Relationship(nodeJingdian,"旅游时间",nodeTime)graph.merge(rel3,"traveltime","time")nodeAAA = Node("Stars",star=random.choice(stars))#graph.create(nodeAAA)rel4 = Relationship(nodeJingdian,"星级",nodeAAA)graph.merge(rel4,"Stars","star")if __name__ == '__main__':graph = Graph("bolt://localhost:7687",auth=("neo4j","neo4j?"))print("neo4j连接成功")importCSV2NeoKG(graph,"公园2050101Attr.csv","gongyuan")print("gongyuan ok")importCSV2NeoKG(graph,"景点2050201and20600102Attr.csv","jingdian")print("jingdian ok")

坐标用到了geohash,尝试安装过几种geohash库,均有错误。最后,直接复制源代码生成.py文件。
geohash.py代码如下:

from __future__ import division
from collections import namedtuple
from builtins import range
import decimal
import mathbase32 = '0123456789bcdefghjkmnpqrstuvwxyz'def _indexes(geohash):if not geohash:raise ValueError('Invalid geohash')for char in geohash:try:yield base32.index(char)except ValueError:raise ValueError('Invalid geohash')def _fixedpoint(num, bound_max, bound_min):"""Return given num with precision of 2 - log10(range)Params------num: A numberbound_max: max bound, e.g max latitude of a geohash cell(NE)bound_min: min bound, e.g min latitude of a geohash cell(SW)Returns-------A decimal"""try:decimal.getcontext().prec = math.floor(2-math.log10(bound_max- bound_min))except ValueError:decimal.getcontext().prec = 12return decimal.Decimal(num)def bounds(geohash):"""Returns SW/NE latitude/longitude bounds of a specified geohash::|      .| NE|    .  ||  .    |SW |.      |:param geohash: string, cell that bounds are required of:returns: a named tuple of namedtuples Bounds(sw(lat, lon), ne(lat, lon)). >>> bounds = geohash.bounds('ezs42')>>> bounds>>> ((42.583, -5.625), (42.627, -5.58)))>>> bounds.sw.lat>>> 42.583"""geohash = geohash.lower()even_bit = Truelat_min = -90lat_max = 90lon_min = -180lon_max = 180# 5 bits for a char. So divide the decimal by power of 2, then AND 1# to get the binary bit - fast modulo operation.for index in _indexes(geohash):for n in range(4, -1, -1):bit = (index >> n) & 1if even_bit:# longitudelon_mid = (lon_min + lon_max) / 2if bit == 1:lon_min = lon_midelse:lon_max = lon_midelse:# latitudelat_mid = (lat_min + lat_max) / 2if bit == 1:lat_min = lat_midelse:lat_max = lat_mideven_bit = not even_bitSouthWest = namedtuple('SouthWest', ['lat', 'lon'])NorthEast = namedtuple('NorthEast', ['lat', 'lon'])sw = SouthWest(lat_min, lon_min)ne = NorthEast(lat_max, lon_max)Bounds = namedtuple('Bounds', ['sw', 'ne'])return Bounds(sw, ne)def decode(geohash):"""Decode geohash to latitude/longitude. Location is approximate centre of thecell to reasonable precision.:param geohash: string, cell that bounds are required of:returns: Namedtuple with decimal lat and lon as properties.>>> geohash.decode('gkkpfve')>>> (70.2995, -27.9993)"""(lat_min, lon_min), (lat_max, lon_max) = bounds(geohash)lat = (lat_min + lat_max) / 2lon = (lon_min + lon_max) / 2lat = _fixedpoint(lat, lat_max, lat_min)lon = _fixedpoint(lon, lon_max, lon_min)Point = namedtuple('Point', ['lat', 'lon'])return Point(lat, lon)def encode(lat, lon, precision):"""Encode latitude, longitude to a geohash.:param lat: latitude, a number or string that can be converted to decimal.Ideally pass a string to avoid floating point uncertainties.It will be converted to decimal.:param lon: longitude, a number or string that can be converted to decimal.Ideally pass a string to avoid floating point uncertainties.It will be converted to decimal.:param precision: integer, 1 to 12 represeting geohash levels upto 12.:returns: geohash as string.>>> geohash.encode('70.2995', '-27.9993', 7)>>> gkkpfve"""lat = decimal.Decimal(lat)lon = decimal.Decimal(lon)index = 0  # index into base32 mapbit = 0   # each char holds 5 bitseven_bit = Truelat_min = -90lat_max = 90lon_min = -180lon_max = 180ghash = []while(len(ghash) < precision):if even_bit:# bisect E-W longitudelon_mid = (lon_min + lon_max) / 2if lon >= lon_mid:index = index * 2 + 1lon_min = lon_midelse:index = index * 2lon_max = lon_midelse:# bisect N-S latitudelat_mid = (lat_min + lat_max) / 2if lat >= lat_mid:index = index * 2 + 1lat_min = lat_midelse:index = index * 2lat_max = lat_mideven_bit = not even_bitbit += 1if bit == 5:# 5 bits gives a char in geohash. Start overghash.append(base32[index])bit = 0index = 0return ''.join(ghash)def adjacent(geohash, direction):"""Determines adjacent cell in given direction.:param geohash: cell to which adjacent cell is required:param direction: direction from geohash, string, one of n, s, e, w:returns: geohash of adjacent cell>>> geohash.adjacent('gcpuyph', 'n')>>> gcpuypk"""if not geohash:raise ValueError('Invalid geohash')if direction not in ('nsew'):raise ValueError('Invalid direction')neighbour = {'n': ['p0r21436x8zb9dcf5h7kjnmqesgutwvy','bc01fg45238967deuvhjyznpkmstqrwx'],'s': ['14365h7k9dcfesgujnmqp0r2twvyx8zb','238967debc01fg45kmstqrwxuvhjyznp'],'e': ['bc01fg45238967deuvhjyznpkmstqrwx','p0r21436x8zb9dcf5h7kjnmqesgutwvy'],'w': ['238967debc01fg45kmstqrwxuvhjyznp','14365h7k9dcfesgujnmqp0r2twvyx8zb'],}border = {'n': ['prxz',     'bcfguvyz'],'s': ['028b',     '0145hjnp'],'e': ['bcfguvyz', 'prxz'],'w': ['0145hjnp', '028b'],}last_char = geohash[-1]parent = geohash[:-1]  # parent is hash without last chartyp = len(geohash) % 2# check for edge-cases which don't share common prefixif last_char in border[direction][typ] and parent:parent = adjacent(parent, direction)index = neighbour[direction][typ].index(last_char)return parent + base32[index]def neighbours(geohash):"""Returns all 8 adjacent cells to specified geohash::| nw | n | ne ||  w | * | e  || sw | s | se |:param geohash: string, geohash neighbours are required of:returns: neighbours as namedtuple of geohashes with properties n,ne,e,se,s,sw,w,nw>>> neighbours = geohash.neighbours('gcpuyph')>>> neighbours>>> ('gcpuypk', 'gcpuypm', 'gcpuypj', 'gcpuynv', 'gcpuynu', 'gcpuyng', 'gcpuyp5', 'gcpuyp7')>>> neighbours.ne>>> gcpuypm"""n = adjacent(geohash, 'n')ne = adjacent(n, 'e')e = adjacent(geohash, 'e')s = adjacent(geohash, 's')se = adjacent(s, 'e')w = adjacent(geohash, 'w')sw = adjacent(s, 'w')nw = adjacent(n, 'w')Neighbours = namedtuple('Neighbours',['n', 'ne', 'e', 'se', 's', 'sw', 'w', 'nw'])return Neighbours(n, ne, e, se, s, sw, w, nw)

KG效果

命令行里启动neo4j:
neo4j.bat console

KG入库效率优化方案

上文的python方法是py2neo的基本方法,经过本人亲测,当节点量到3~5w的时候,入库开始变慢,以小时计。

百度后,有大神提供了另外一种方法:
采用这种方法,建立50w个节点和50w个关系,流程包括node、rel的建立、append到list、入库,全过程4分钟以内搞定。测试环境在VM虚拟机实现。
代码如下:

from py2neo import Graph, Subgraph, Node, Relationship
from progressbar import *
import datetimedef batch_create(graph, nodes_list, relations_list):subgraph = Subgraph(nodes_list, relations_list)tx_ = graph.begin()tx_.create(subgraph)graph.commit(tx_)if __name__ == '__main__':# 连接neo4jgraph = Graph("bolt://localhost:7687",auth=("neo4j","neo4j?"))# 批量创建节点nodes_list = []  # 一批节点数据relations_list = []  # 一批关系数据nodeCity_new = Node("chengshi",name="北京")nodes_list.append(nodeCity_new)widgets = ['CSV导入KG进度: ', Percentage(), ' ', Bar('#'), ' ', Timer(), ' ', ETA(), ' ']bar = ProgressBar(widgets=widgets, maxval=500000)bar.start()#for i in range(0,500000):bar.update(i+1)nodeQu_new = Node("quxian",name="Test{0}".format(i))nodes_list.append(nodeQu_new)rel1 = Relationship(nodeQu_new,"属于",nodeCity_new)relations_list.append(rel1)bar.finish()current_time = datetime.datetime.now()print("current_time:    " + str(current_time))# 批量创建节点/关系batch_create(graph, nodes_list, relations_list)current_time = datetime.datetime.now()print("current_time:    " + str(current_time))print("batch ok")

PostGreSQL建库

pg建库。携程poi入库tripdata的poibaseinfo表,之后,导航poi中的公园、景点也导入该表。

携程poi导入代码:psycopg2_004.py

import psycopg2
import csv
import random
import geohash
from progressbar import *#
#携程爬虫csv数据入库
# 
def importCtripCSV2PG(cur,csvpath,csvcity,csvprovice):#     csvPath = "pois_bj_ctrip.csv"with open(csvpath,"r",encoding="utf-8") as f:reader = csv.reader(f)datas = list(reader)print("csv datas number = {}".format(len(datas)))print("")widgets = ['爬虫数据导入PG进度: ', Percentage(), ' ', Bar('#'), ' ', Timer(), ' ', ETA(), ' ']bar = ProgressBar(widgets=widgets, maxval=len(datas))bar.start()##sCol = "namec,namec2,namee,tags,brief,ticket,ticketmin,ticketadult,ticketchild,ticketold,ticketstudent,scores,scorenumber,opentime,spendtime,introduceinfo,salesinfo,guid,quyu,city,province,contry"#sCol = "namec,namee,tags,brief,ticket,ticketmin,ticketadult,ticketchild,ticketold,ticketstudent,scores,scorenumber,opentime,spendtime,introduceinfo,salesinfo,city,province,contry"sCol = "namec,namee,tags,brief,ticket,ticketmin,ticketadult,ticketchild,ticketold,ticketstudent,scores,scorenumber,opentime,spendtime,introduceinfo,salesinfo,x,y,geos,photourl,city,province,contry"#     print("sCol number = {}".format(len(sCol)))for i in range(0,len(datas)):bar.update(i+1)data = datas[i]if data==None or len(data)==0:#print("{}行None值".format(i))continue if data[0]=="名称" or data[0]==None :continue geoxy_encode = geohash.encode( data[5],data[4],7 )values = ",".join("\'{0}\'".format(w) for w in [data[0].replace("\'","''"),data[1].replace("\'","''"),data[6],data[7],data[8],data[9],data[13],data[16],data[14],data[15],data[10],data[11],data[18].replace("\'","''"),data[17].replace("\'","''"),data[19].replace("\'","''"),data[20].replace("\'","''"),data[5],data[4],geoxy_encode,data[12],csvcity,csvprovice,"中国"])#     print(values)sqlpre = "insert into poibaseinfo({})".format(sCol)sql = sqlpre+" values ({})".format(values)#     print(sql)try:cur.execute(sql)except psycopg2.Error as e:print(e)bar.finish()if __name__ == '__main__':user = "postgres"pwd = "你的密码"port = "5432"hostname = "127.0.0.1"conn = psycopg2.connect(database = "tripdata", user = user, password = pwd, host = "127.0.0.1", port = port)print(conn)sql = "select * from poibaseinfo"cur = conn.cursor()cur.execute(sql)cols = cur.descriptionprint("PG cols number = {}".format(len(cols)))#CSV文件导入PGcsvPath = "pois_bj_ctrip.csv"    importCtripCSV2PG(cur,csvPath,"北京","北京")#其他CSV文件导入PG#TODO...conn.commit()cur.close()conn.close()print("ok")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/735842.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C语言】——详解操作符(下)

【C语言】——详解操作符&#xff08;下&#xff09; 前言七、关系操作符八、逻辑操作符8.1、& 与运算符8.2、 | 或运算符 九、条件操作符十、逗号表达式十一、下标引用与函数调用操作符11.1、[ ] 下标引用操作符11.2、( ) 函数调用操作符 十二、 结构成员操作符12.1、…

新版ui周易测算网站H5源码/在线起名网站源码/运势测算网站系统源码,附带系统搭建教程

支持对接第三方支付 安装方法以linux为例 1、建议在服务器上面安装宝塔面板&#xff0c;以便操作&#xff0c;高逼格技术员可以忽略这步操作。 2、把安装包文件解压到根目录&#xff0c;同时建立数据库&#xff0c;把数据文件导入数据库 3、修改核心文件config/inc_config.…

“ReferenceError: AMap is not defined“

问题 笔者进行web开发&#xff0c;引入高德地图&#xff0c;控制台报错 "ReferenceError: AMap is not defined"详细问题 vue.runtime.esm.js:4662 [Vue warn]: Error in mounted hook: "ReferenceError: AMap is not defined"found in---> <Map&…

React-嵌套路由

1.概念 说明&#xff1a;在一级路由中又内嵌了其他路由&#xff0c;这种关系就叫做嵌套路由&#xff0c;嵌套至一级路由内的路由又称作二级路由。 2.实现步骤 说明&#xff1a;使用childen属性配置路由嵌套关系&#xff0c;使用<Outlet/>组件配置二级路由渲染的位置。…

吴恩达机器学习-可选实验室:逻辑回归,决策边界(Logistic Regression,Decision Boundary))

文章目录 目标数据集图数据逻辑回归模型复习逻辑回归和决策边界绘图决策边界恭喜 目标 在本实验中&#xff0c;你将:绘制逻辑回归模型的决策边界。这会让你更好地理解模型的预测。 import numpy as np %matplotlib widget import matplotlib.pyplot as plt from lab_utils_co…

Day41| 416 分割等和子集

目录 416 分割等和子集 416 分割等和子集 class Solution { public:bool canPartition(vector<int>& nums) {int sum 0;vector<int> dp(10010, 0);for (int i 0; i < nums.size(); i) {sum nums[i];}if (sum % 2 1) return false;int target sum /…

软考笔记--信息系统架构

一.架构风格 信息系统架构设计的一个核心问题是能否使用重复的信息系统架构模式&#xff0c;即能否达到架构级别的软件重用。信息系统架构风格是描述某个特定应用领域中系统组织方式的惯用模式&#xff0c;架构风格定义了一个系统家族&#xff0c;即一个架构定义一个词汇表和一…

pytorch单机多卡训练 logger日志记录和wandb可视化

PyTorch 单机多卡训练示例 1、工具&#xff1a;2、代码3、启动 1、工具&#xff1a; wandb&#xff1a;云端保存训练记录&#xff0c;可实时刷新logging&#xff1a;记录训练日志argparse&#xff1a;设置全局参数 2、代码 import os import time import torch import wandb…

elementPlus的坑

记录由 element ui 到element plus的过程 el-form v-model与:model v-model就不用说了&#xff0c;这个:model类似于内置的API接口&#xff0c;用的时候这两个值一样就行 不一样的话会出现&#xff0c;如下奇怪的情况 能输入&#xff0c;但是只能文本框中只显示1个字符&#x…

jmeter快速使用

文章目录 前言一、安装jmeter二、插件安装三、添加常用监听器参考 前言 Apache JMeter may be used to test performance both on static and dynamic resources, Web dynamic applications. It can be used to simulate a heavy load on a server, group of servers, network…

Redis核心数据结构之整数集合

整数集合 概述 整数集合(intset)是集合键的底层实现之一&#xff0c;当一个集合只包含整数值元素&#xff0c;并且这个结合的元素数量不多时&#xff0c;Redis就会使用整数集合作为集合键的底层实现。 例子 举个例子&#xff0c;如果创建一个只包含五个元素的集合键&#x…

MySQL 8.0 架构 之 慢查询日志(Slow query log)(2)流程图:查询记录到慢查询日志中的条件

文章目录 MySQL 8.0 架构 之 慢查询日志&#xff08;Slow query log&#xff09;&#xff08;2&#xff09;流程图&#xff1a;查询记录到慢查询日志中的条件确定查询是否会记录在慢查询日志中的流程图参考 【声明】文章仅供学习交流&#xff0c;观点代表个人&#xff0c;与任何…

JavaScript数组方法常用方法大全

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 1. push()2. pop()3. unshift()4. shift()5. isArray()6. map()7. filter()8. every()9. some()10. splice()11. slice()12. indexOf()13. includes()14. concat()1…

RK3588 Android 12 系统内核开发+Native层脚本自启动+SELinux配置

前言 开发板型号&#xff1a;RK_EVB7_RK3588_LP4…_V11目标&#xff1a;在开发板上随开机自启动脚本&#xff0c;带起二进制程序&#xff0c;并完备一些其他系统功能。简介&#xff1a;本文自启动脚本run.sh唯一的作用就是拉起二进制程序demo&#xff1b;demo是简单的hello_wo…

Linux下阻塞IO驱动实验三的测试

一. 简介 前面一篇文章实现了驱动代码,以实现应用程序阻塞式访问设备,核心使用的Linux内核提供的阻塞IO机制:等待队列。文章地址如下: Linux下阻塞IO驱动实验实例三-CSDN博客 本文对驱动模块进行测试,测试按键功能是否正常,查看应用程序运行时CPU占用率是否接近0%,当…

【大厂AI课学习笔记NO.76】人工智能人才金字塔

人工智能领域&#xff0c;分为源头创新人才、产业研发人才、应用开发人才和实用技能人才。 人工智能领域的人才结构呈现多样化特点&#xff0c;主要可以分为源头创新人才、产业研发人才、应用开发人才和实用技能人才四大类。这四大类人才在人工智能领域的发展中各自扮演着不可或…

Android下使用OpenOCD

目录 1. 准备工作 2. 运行bootstrap 3. 运行Configure 4. 编译make 4.1 错误1 4.2 错误2 4.3 错误3 4.4 错误4 4.5 错误5 4.6 错误6 4.7 错误7 5. 安装 主要是使用NDK编译OpenOCD源码。最好先在Ubuntu中编译通过OpenOCD。 1. 准备工作 Ubuntu下下载NDK和OpenOCD&…

linux安全配置规范

一、 概述 1.1 适用范围 本配置规范适用于凝思操作系统&#xff0c;主要涉及LINUX操作系统安全配置方面的基本要求&#xff0c;用于指导LINUX操作系统安全加固工作&#xff0c;落实信息安全等级保护等保三级系统操作系统安全配置&#xff0c;为主机安全配置核查提供依据。…

Python刘诗诗

写在前面 刘诗诗在电视剧《一念关山》中饰演了女主角任如意&#xff0c;这是一个极具魅力的女性角色&#xff0c;她既是一位有着高超武艺和智慧的女侠士&#xff0c;也曾经是安国朱衣卫前左使&#xff0c;身怀绝技且性格坚韧不屈。剧中&#xff0c;任如意因不满于朱衣卫的暴行…

P1948 [USACO08JAN] Telephone Lines S

Here 典中之典&#xff01;&#xff01; 解题思路 可选k条边代价为0如何决策&#xff1f; 将到当前位置选择了几条代价为0的边放入状态&#xff0c;即若当前状态选的边数小于&#xff0c;则可以进行决策&#xff0c;是否选择当前边&#xff0c;若选&#xff0c;则&#xff0c…