一、美洲狮优化算法
美洲狮优化算法(Puma Optimizar Algorithm ,POA)由Benyamin Abdollahzadeh等人于2024年提出,其灵感来自美洲狮的智慧和生活。在该算法中,在探索和开发的每个阶段都提出了独特而强大的机制,这提高了算法对各种优化问题的性能。此外,该算法还提出了一种新型的智能机制,即相变的超启发式机制(PI),使用这种机制,PO算法可以在优化操作期间执行相变操作,并平衡探索和开发,同时探索和开发都会根据问题的性质自动调整。2024最新算法:美洲狮优化算法(Puma Optimizar Algorithm ,POA)求解23个基准函数(提供MATLAB代码)-CSDN博客
参考文献:
[1]Abdollahzadeh, B., Khodadadi, N., Barshandeh, S. et al. Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning. Cluster Comput (2024). Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning | Cluster Computing
二、部分代码
clc
clear
close all
tic
%% 地图
global G S E
G=[0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0; 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0; 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0; 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0; 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0; 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0;0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0; 0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0; 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0; 0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0; 0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0; 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0; 1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0; 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0;];
for i=1:20/2for j=1:20m=G(i,j);n=G(21-i,j);G(i,j)=n;G(21-i,j)=m;end
end
%%
S = [1 1]; %起点
E = [20 20]; %终点
[ub,dimensions] = size(G);
dim = dimensions - 2;
%% 参数设置
Max_iter= 200; % 最大迭代次数
SearchAgents_no = 50; % 种群数量
X_min = 1;
lb=1;
fobj=@(x)fitness(x);
[Best_score,Best_NC,Convergence_curve]=POA(SearchAgents_no,Max_iter,lb,ub,dim,fobj);toc
%% 结果分析
global_best = round(Best_NC);
figure(1)
plot(Convergence_curve,'k-','linewidth',2.5)
xlabel('Iteration');
ylabel('Fitness');
legend('POA')
三、部分结果
四、完整MATLAB代码
美洲狮优化算法(Puma Optimizar Algorithm ,POA)求解机器人栅格地图最短路径规划