Java二叉树 (2)

🐵本篇文章将对二叉树的一些基础操作进行梳理和讲解


一、操作简述

int size(Node root);  // 获取树中节点的个数int getLeafNodeCount(Node root);  // 获取叶子节点的个数int getKLevelNodeCount(Node root,int k);  // 获取第K层节点的个数int getHeight(Node root);  // 获取二叉树的高度TreeNode find(Node root, int val);   // 检测值为value的元素是否存在void levelOrder(Node root);  //层序遍历boolean isCompleteTree(Node root)   // 判断一棵树是不是完全二叉树

接下来会对下面这棵树进行上述操作:

public class BinaryTree {static class TreeNode {public char val;public TreeNode left;public TreeNode right;public TreeNode(char val) {this.val = val;}}
}

二、代码实现

1.获取树中结点的个数

思路:定义一个nodeSize, 按照二叉树前序遍历的方式遍历这颗二叉树, 每遍历一个结点, nodeSize就+1

    public int nodeSize; //nodeSize不能写到方法内部,否则每次递归nodeSize都会被初始化为0,最终导致结果错误public int size(TreeNode root) {if (root == null) {return 0;}nodeSize++;size(root.left);size(root.right);return nodeSize;}

2. 获取树中叶子结点的个数

思路:叶子结点也就是没有左右孩子的结点,该方法的实现和上一个方法思路大体一致,定义一个leafNode,在遍历这颗二叉树的过程中,如果该节点没有左右孩子则leafNode + 1

    public static int leafNode;public int getLeafNodeCount(TreeNode root) { //计算叶子结点个数if (root == null) {return 0;}if (root.left == null && root.right == null) {leafNode++;}getLeafNodeCount(root.left);getLeafNodeCount(root.right);return leafNode;}

3. 计算k层结点的个数

思路:假如要计算第3层结点的个数,k = 3,整个树的第3层也就是这个树的左子树(B)的第2层+右子树(C)的第2层,也就是B的左子树的第一层 + B的右子树的第一层 和C的左子树的第一层 + C的右子树的第一层,通过前序遍历的方式,每遍历到一层k就减1,当k == 1时就返回1

    public int getKLevelNodeCount(TreeNode root,int k) {//计算第k层结点的个数if (root == null) {return 0;}if (k == 1) {return 1;}k--;return getKLevelNodeCount(root.left, k) +getKLevelNodeCount(root.right, k);}

4. 获取树的高度

思路:整个树的高度也就是左子树的高度和右子树的高度的最大值+1,再通过递归的方式求左子树和右子树的高度

    public int getHeight(TreeNode root) {if (root == null) {return 0;}int leftHeight = getHeight(root.left);int rightHeight = getHeight(root.right);return Math.max(leftHeight, rightHeight) + 1;}

5. 检测值为val的元素的结点是否存在

思路:遍历这棵二叉树,找到值为val的结点后逐层返回,直接看代码:

    public TreeNode find(TreeNode root, char val) {if (root == null) {return null;}if (root.val == val) {return root;}TreeNode leftNode = find(root.left, val);//必须用一个变量来接收,否则上述返回的root没有意义,最终返回的还是nullif (leftNode != null) { //leftNode不为空说明找到了,将其返回return leftNode;}TreeNode rightNode = find(root.right, val);if (rightNode != null) {return rightNode;}return null; //没有找到val结点就返回null}

6. 层序遍历二叉树

思路:定义一个队列,先将这个树的根结点入队,之后通过循环如果队列不为空,则让队头结点出队,判断该结点的左和右是否为空,不为空的入队,如此循环知道队列为空,整个二叉树遍历完毕

    public void levelOrder(TreeNode root) {if (root == null) {return;}Queue<TreeNode> queue = new LinkedList<>();queue.offer(root);while(!queue.isEmpty()) {TreeNode cur = queue.poll();System.out.print(cur.val +" ");if(cur.left != null) {queue.offer(cur.left);}if (cur.right != null) {queue.offer(cur.right);}}}

7. 判断一棵树是不是完全二叉树

以这棵树为例:

一开始和层序遍历的思路一样,定义一个队列,将树的根结点存入队列中,接下来设置一个循环,当队列不为空的情况下将队头元素出队,如果出队结点不为空则直接将其左右孩子入队(不用判断其左右孩子是否为空)如果出队结点为空则结束该循环

完成上述操作后再设置一个循环,循环条件仍然是队列不为空,每次循环都将队头元素出队然后进行判断,如果该结点不为空,则该树不是完全二叉树

根据上述操作对上面这棵树进行实操

将根结点入队,之后进入循环,将队头元素出队,A结点不为空所以将其左右孩子入队,之后再将队头元素出队,B结点不为空所以再将其左右孩子入队

再将C出队,C结点不为空,再将其左右孩子入队,再将D结点出队,D结点不为空,再将其左右孩子入队,之后再将队头元素出队,此时出队的元素为空,此循环结束

进入第二个循环,只要队列不为空,就出队队头元素然后对其进行判断,只要出队元素不为空,则其不是完全二叉树,上述队列全部为null,所以该树是完全二叉树

如果是下面这棵树,在第一次循环后,会是如下情况:

在第二个循环由于D结点不为null,所以该树不是完全二叉树

代码如下:

    public boolean isCompleteTree(TreeNode root) {if (root == null) {return false;}Queue<TreeNode> queue = new LinkedList<>();queue.offer(root);while(!queue.isEmpty()) {TreeNode cur = queue.poll();if (cur == null) {break;}queue.offer(cur.left);queue.offer(cur.right);}while(!queue.isEmpty()) {TreeNode cur = queue.poll();if (cur != null) {return false;}}return true;}

🙉本篇文章到此结束

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/734602.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

P1958 上学路线

难度&#xff1a;普及- 题目描述 你所在城市的街道好像一个棋盘&#xff0c;有 a 条南北方向的街道和 b 条东西方向的街道。南北方向的 a 条街道从西到东依次编号为 1 到 a&#xff0c;而东西方向的 b 条街道从南到北依次编号为 1 到 b&#xff0c;南北方向的街道 i 和东西方…

单数码管(arduino)

1.连接方法 挨个点亮每个灯 #include <Arduino.h>int pin_list[] {4, 5, 19, 21, 22, 2, 15, 18}; int num_pins sizeof(pin_list) / sizeof(pin_list[0]); // 计算数组中的元素数量void setup() {// 设置每个引脚为输出for(int i 0; i < num_pins; i) {pinMode(p…

C语言:ctype和string库中的部分常用函数的应用和实现

在编程过程中&#xff0c;我们经常要处理字符和字符串&#xff0c;C语言标准库中就提供了一系列的库函数&#xff0c;便于我们操作库函数。 字符分类函数 C语⾔中有⼀系列的函数是专⻔做字符分类的&#xff0c;也就是⼀个字符是属于什么类型的字符的。这些函数的使⽤都需要包含…

Springboot 集成kafka 消费者实现ssl方式连接监听消息实现消费

证书准备&#xff1a;springboot集成kafka 消费者实现 如何配置是ssl方式连接的时候需要进行证书的转换。原始的证书是pem, 或者csr方式 和key方式的时候需要转换&#xff0c;因为kafka里面是jks 需要通过openssl进行转换。 证书处理&#xff1a; KeyStore 用于存储客户端的证…

分类预测 | Matlab基于TTAO-CNN-LSTM-Attention三角拓扑聚合优化算法优化卷积神经网络-长短期记忆网络-注意力机制的数据分类预测

分类预测 | Matlab基于TTAO-CNN-LSTM-Attention三角拓扑聚合优化算法优化卷积神经网络-长短期记忆网络-注意力机制的数据分类预测 目录 分类预测 | Matlab基于TTAO-CNN-LSTM-Attention三角拓扑聚合优化算法优化卷积神经网络-长短期记忆网络-注意力机制的数据分类预测分类效果基…

【Python】进阶学习:OpenCV--一文详解cv2.namedWindow()

【Python】进阶学习&#xff1a;OpenCV–一文详解cv2.namedWindow() &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&#x1f448; 希望…

C++椭圆检测论文复现 Ubuntu 22.04+Vscode+opencv3.4

复现的代码 本博客旨在复现论文《An Efficient High-quality Ellipse Detection》&#xff0c;该文章本来只有Matlab的代码实现&#xff0c;后来被islands翻译成了c 库&#xff0c;大家可以参考islands发在知乎上的文章高质量椭圆检测库&#xff0c;C的代码链接。 使用环境 U…

ROS2动作通信的实现

文章目录 1.动作通信的概念及应用场景1.1 概念1.2 应用场景 2.准备工作3.动作通信的实现3.1 动作通信接口消息3.2 服务端实现3.3 客户端实现3.4 编译及运行 1.动作通信的概念及应用场景 1.1 概念 动作通信适用于长时间运行的任务。就结构而言动作通信由目标、反馈和结果三部分…

吴恩达机器学习-可选实验室:可选实验:使用逻辑回归进行分类(Classification using Logistic Regression)

在本实验中&#xff0c;您将对比回归和分类。 import numpy as np %matplotlib widget import matplotlib.pyplot as plt from lab_utils_common import dlc, plot_data from plt_one_addpt_onclick import plt_one_addpt_onclick plt.style.use(./deeplearning.mplstyle)jupy…

第三百九十二回

文章目录 1. 概念介绍2. 方法与细节2.1 实现方法2.2 具体细节 3. 示例代码4. 内容总结 我们在上一章回中介绍了"如何混合选择多个图片和视频文件"相关的内容&#xff0c;本章回中将介绍如何通过相机获取图片文件.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. …

JavaWeb--Maven

一&#xff1a;概述 1.简介 Maven 是专门用于管理和构建 Java 项目的工具&#xff0c;它的主要功能有&#xff1a; 提供了一套标准化的项目结构 提供了一套标准化的构建流程&#xff08;编译&#xff0c;测试&#xff0c;打包&#xff0c;发布 …… &#xff09; 提供了一套…

Minio搭建文件服务器

目录 一、Minio使用&#x1f355;1.1 Minio介绍1.2 Minio安装1.3 Minio入门 二、创建后端服务&#x1f953;2.1创建一个SpringBoot项目2.2 代码实现2.2.1 FileUploadController2.3.2 FileUploadService2.3.3 MinioProperties2.3.4 MinioServerApplication2.2.4 配置文件内容 三…

如何使用固定公网地址SFTP远程传输文件至安卓Termux本地目录?

文章目录 1. 安装openSSH2. 安装cpolar3. 远程SFTP连接配置4. 远程SFTP访问4. 配置固定远程连接地址 SFTP&#xff08;SSH File Transfer Protocol&#xff09;是一种基于SSH&#xff08;Secure Shell&#xff09;安全协议的文件传输协议。与FTP协议相比&#xff0c;SFTP使用了…

misc40

下载附件&#xff0c;发现只有第三个wav文件需要密码&#xff0c;其他都可以看 打开 conversion.txt 二进制转十进制得到202013 开 一张普通的二维码.png&#xff0c;直接扫不出结果。 010查看图片尾部发现 Brainfuck 编码 解码得到&#xff1a; 和谐民主和谐文明和谐和谐和谐…

数据分析-Pandas数据分组箱线图

数据分析-Pandas数据分组箱线图 数据分析和处理中&#xff0c;难免会遇到各种数据&#xff0c;那么数据呈现怎样的规律呢&#xff1f;不管金融数据&#xff0c;风控数据&#xff0c;营销数据等等&#xff0c;莫不如此。如何通过图示展示数据的规律&#xff1f; 数据表&#x…

在垃圾回收时哪些可以作为垃圾回收的根对象?

1.System.class 由启动类加载器加载的类&#xff0c;一些核心的类&#xff0c;不如说 2.Native Stack java虚拟机在执行方法调用时必须执行操作系统方法&#xff0c;操作系统方法执行时所引用的一些java对象。 3.Thread 活动线程所引用的一些对象。 4.Busy monitor 被同…

深度学习-Softmax 回归 + 损失函数 + 图片分类数据集

Softmax 回归 损失函数 图片分类数据集 1 softmax2 损失函数1均方L1LossHuber Loss 3 图像分类数据集4 softmax回归的从零开始实现 1 softmax Softmax是一个常用于机器学习和深度学习中的激活函数。它通常用于多分类问题&#xff0c;将一个实数向量转换为概率分布。Softmax函…

Spring Boot 自动装配的原理!!!

SpringBootApplication SpringBootConfiguration&#xff1a;标识启动类是一个IOC容器的配置类 EnableAutoConfiguration&#xff1a; AutoConfigurationPackage&#xff1a;扫描启动类所在包及子包中所有的组件&#xff0c;生…

C++特殊类设计【特殊类 || 单例对象 || 饿汉模式 || 懒汉模式】

目录 一&#xff0c;特殊类设计 1. 只在堆上创建的类 2. 只允许在栈上创建的类 3. 不能被继承的类 4. 不能被拷贝的类 5. 设计一个类&#xff0c;只能创建一个对象&#xff08;单例对象&#xff09; 饿汉模式 懒汉模式 C11静态成员初始化多线程安全问题 二&#xff…

linux安装ngnix完整步骤(支持centos/银河麒麟操作系统)

linux安装ngnix&#xff08;支持centos/银河麒麟操作系统&#xff09; 本次操作系统安装ngnix采用离线或在线安装方式&#xff0c;离线就是不联网环境&#xff0c;在线则是联网环境&#xff1b;支持centos7或centos8或国产操作系统&#xff08;银河麒麟高级服务器操作系统&…