数据分析-Pandas数据分组箱线图

数据分析-Pandas数据分组箱线图

数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律?

数据表,时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。数据分析过程中重新调整,重塑数据表是很重要的技巧,此处选择Titanic数据,以及巴黎、伦敦欧洲城市空气质量监测 N O 2 NO_2 NO2数据作为样例。

数据分析

数据分析-Pandas如何转换产生新列

数据分析-Pandas如何统计数据概况

数据分析-Pandas如何轻松处理时间序列数据

数据分析-Pandas如何选择数据子集

数据分析-Pandas如何重塑数据表-CSDN博客

本文用到的样例数据:

Titanic数据

空气质量监测 N O 2 NO_2 NO2数据

样例代码:

源代码参考 Pandas如何重塑数据表

源代码参考 python数据分析-数据表读写到pandas

导入关键模块

import pandas as pd
import numpy as np
import matplotlib.pyplot as pltplt.close("all")

画箱线图

除了df.plot.box 画图以外,还有一种方法,就是df.boxplot() 方法。一样可以画箱线图表达出最大值,最小值,中位数等信息,以下是调用的样例:

df = pd.DataFrame(np.random.rand(10, 5))plt.figure();bp = df.boxplot()

在这里插入图片描述

分组箱线图

如果还想设置分组,例如,前5行为A组,后5行为B组,可以一并显示,例如:

df = pd.DataFrame(np.random.rand(10, 2), columns=["Col1", "Col2"])df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])plt.figure();bp = df.boxplot(by="X")

在这里插入图片描述

更复杂一点的分组,这里为2种分组,自行琢磨下。如下:

df = pd.DataFrame(np.random.rand(10, 3), columns=["Col1", "Col2", "Col3"])df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])df["Y"] = pd.Series(["A", "B", "A", "B", "A", "B", "A", "B", "A", "B"])plt.figure();bp = df.boxplot(column=["Col1", "Col2"], by=["X", "Y"])

在这里插入图片描述

其实分组,对于df.plot.box() 也可以用的,图像略有差异

df = pd.DataFrame(np.random.rand(10, 3), columns=["Col1", "Col2", "Col3"])df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])plt.figure();bp = df.plot.box(column=["Col1", "Col2"], by="X")

在这里插入图片描述

以上代码只是一个简单示例,示例代码中的表达式可以根据实际问题进行修改。

后面介绍下其他的展示形式。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/734576.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在垃圾回收时哪些可以作为垃圾回收的根对象?

1.System.class 由启动类加载器加载的类,一些核心的类,不如说 2.Native Stack java虚拟机在执行方法调用时必须执行操作系统方法,操作系统方法执行时所引用的一些java对象。 3.Thread 活动线程所引用的一些对象。 4.Busy monitor 被同…

深度学习-Softmax 回归 + 损失函数 + 图片分类数据集

Softmax 回归 损失函数 图片分类数据集 1 softmax2 损失函数1均方L1LossHuber Loss 3 图像分类数据集4 softmax回归的从零开始实现 1 softmax Softmax是一个常用于机器学习和深度学习中的激活函数。它通常用于多分类问题,将一个实数向量转换为概率分布。Softmax函…

Spring Boot 自动装配的原理!!!

SpringBootApplication SpringBootConfiguration:标识启动类是一个IOC容器的配置类 EnableAutoConfiguration: AutoConfigurationPackage:扫描启动类所在包及子包中所有的组件,生…

C++特殊类设计【特殊类 || 单例对象 || 饿汉模式 || 懒汉模式】

目录 一,特殊类设计 1. 只在堆上创建的类 2. 只允许在栈上创建的类 3. 不能被继承的类 4. 不能被拷贝的类 5. 设计一个类,只能创建一个对象(单例对象) 饿汉模式 懒汉模式 C11静态成员初始化多线程安全问题 二&#xff…

linux安装ngnix完整步骤(支持centos/银河麒麟操作系统)

linux安装ngnix(支持centos/银河麒麟操作系统) 本次操作系统安装ngnix采用离线或在线安装方式,离线就是不联网环境,在线则是联网环境;支持centos7或centos8或国产操作系统(银河麒麟高级服务器操作系统&…

element-ui radio 组件源码分享

今日简单分享 radio 组件的实现原理,主要从以下三个方面来分享: 1、radio 页面结构 2、radio 组件属性 3、radio 组件方法 一、radio 页面结构 1.1 页面结构如下: 二、radio 属性 2.1 value / v-model 属性,类型为 string / …

鲜为人知的闰年判定大坑

【题目描述】 输入年份,判断是否为闰年。如果是,则输出yes,否则输出no。 提示:简单地判断除以4的余数是不够的。 【题目来源】 刘汝佳《算法竞赛入门经典 第2版》习题1-7 年份(year) 【解析】 一、闰…

Decontam去污染:一个尝试

为了程序运行的便利性,不想将Decontam放到windows的Rstudio里面运行,需要直接在Ubuntu中运行,并且为了在Decontam时进行其他操作,使用python去运行R 首先你需要有一个conda环境,安装了R,Decontam&#xff0…

云计算的部署方式(公有云、私有云、混合云、社区云)

云计算的部署方式(公有云、私有云、混合云、社区云) 目录 零、00时光宝盒 一、云计算的部署方式 1.1、公有云(Public Cloud) 1.2、私有云(Private Cloud)  1.3、混合云(Hybrid Cloud) 1.4、社区云&am…

【C++】list模拟实现list迭代器失效问题

list模拟实现&list迭代器失效问题 一,list模拟实现1. list的主要框架接口模拟2. list构造&拷贝构造&析构3. list迭代器3.1 普通迭代器3.2 const迭代器 4. 增删查改 二,迭代器失效问题1. list的迭代器失效原因2. 解决办法 一,list…

Java 汇编源码查看环境搭建

目录 一、简介 二、在IDEA开发环境中搭建汇编环境 2.1 在IDEA中搭建字节码查看环境 2.1.1 搭建步骤 2.1.1.1 第一步 2.1.1.2 第二步 2.1.1.3 第三步 2.1.1.4 第四步 2.1.2 验证 2.2 在IDEA开发环境中搭建汇编代码查看环境 2.2.2 配置HSDIS插件 2.2.3 验证HSDIS插件是…

[虚拟机保护逆向] [HGAME 2023 week4]vm

[虚拟机保护逆向] [HGAME 2023 week4]vm 虚拟机逆向的注意点:具体每个函数的功能,和其对应的硬件编码的*长度* 和 *含义*,都分析出来后就可以编写脚本将题目的opcode转化位vm实际执行的指令 :分析完成函数功能后就可以编写脚本输出…

深度学习在硬件和计算平台上的优化:实现更快、更高效的突破

引言 深度学习,作为机器学习领域的一个子集,通过模拟人脑神经元的连接方式,构建复杂的网络结构来处理和分析数据。然而,随着深度学习模型规模的不断扩大和复杂度的提高,其对计算资源的需求也呈指数级增长。因此&#…

【MySQL】表的增删改查——MySQL基本查询、数据库表的创建、表的读取、表的更新、表的删除

文章目录 MySQL表的增删查改1. Create(创建)1.1 单行插入1.2 多行插入1.3 替换 2. Retrieve(读取)2.1 select查看2.2 where条件2.3 结果排序2.4 筛选分页结果 3. Update(更新)3.1 更新单个数据3.2 更新多个…

如何保证消息的可靠传输

数据的丢失问题,可能出现在生产者、MQ、消费者中 生产者丢失: 生产者将数据发送到 RabbitMQ 的时候,可能数据就在半路给搞丢了,因为网络问题啥的,都有可能。此时可以选择用 RabbitMQ 提供的事务功能,就是生…

Unmanaged PowerShell

简介 在渗透测试当中经常会使用到PowerShell来执行脚本, 但是直接使用PowerShell.exe是一个非常敏感的行为, EDR等产品对PowerShell.exe进程的创建监控的很密切, 并且随着PowerShell的渗透测试工具的普及, 越来越多的EDR会利用微软提供的AMSI接口对PS脚本进行扫描, 但是对于低…

vue实现购物车功能

实现功能 CSS部分 <style>.tr {display: flex;}.th {margin: 10px;width: 20%;height: 50%;}.td {display: flex;margin: 10px;width: 20%;height: 100px;align-items: center;}.app-container .banner-box {border-radius: 20px;overflow: hidden;margin-bottom: 10px;}…

input中文输入法导致的高频事件

这是基本结构 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>中文输入法的高频事件</title&…

通信-CAN-01 总线拓扑

本文主要介绍CAN总线拓扑&#xff0c;并结合实际用到CAN设备做些说明。 1 总线拓扑 拓扑结构中分为CPU&#xff0c;CAN 控制器&#xff0c;收发器&#xff0c;双绞线。CAN控制器根据两根线上的电位差来判断总线电平。发送方通过使总线发生变化&#xff0c;将消息发送给接收方…

BPSK调制解调

BPSK数字调制是相移键控PSK的一种&#xff0c;通过数字信号&#xff0c;调制载波的相位&#xff0c;利用载波的相位变化来反映数字信号&#xff0c;载波的振幅和频率均不变化。PSK应用很广泛&#xff0c;抗噪声性能比ASK和FSK要好&#xff0c;频带利用率较高。BPSK中&#xff0…