R统计学2 - 数据分析入门问题21-40

往期R统计学文章:

R统计学1 - 基础操作入门问题1-20

21. 如何对矩阵按行 (列) 作计算?

使用函数 apply()

vec = 1:20
# 转换为矩阵
mat = matrix (vec , ncol=4)
# [,1] [,2] [,3] [,4]
# [1,]    1    6   11   16
# [2,]    2    7   12   17
# [3,]    3    8   13   18
# [4,]    4    9   14   19
# [5,]    5   10   15   20cumsum(vec)
# 返回一个向量,其元素是参数元素的累积和。
#  [1]   1   3   6  10  15  21  28  36  45  55  66  78  91 105 120 136 153 171 190 210# 对列进行计算
apply (mat, 2 , cumsum)
# [,1] [,2] [,3] [,4]
# [1,]    1    6   11   16
# [2,]    3   13   23   33
# [3,]    6   21   36   51
# [4,]   10   30   50   70
# [5,]   15   40   65   90

22.一组数中随机抽取数据?

函数 sample()
sample(n) 随机组合 1, . . . , n
sample(x) 随机组合向量 x, length(x) > 1
sample(x, replace = T) 解靴带法
sample(x,n) 非放回的从 x 中抽取 n 项
sample(x,n,replace = T) 放回的从 x 中抽取 n 项
sample(x,n, replace = T ,prob = p) 以概率p,放回的从 x 中抽取 n 项

n <- 1000# 随机抽取1000个数,取值范围-1至1
x <- sample(c(-1,1), n, replace = T)# 绘制折线图
plot(cumsum(x), type = "l", main = "Sums")# 模拟生成正态分布数据
# rnorm(n=100 , mean=0, sd=1)

折线图

23. 判断数据框的列是否为数字?

sapply(dataframe, is.numeric)

24.如何将数据标准化?

使用scale函数。

x <- c(rnorm(100), 2 * rnorm(30))
m <- scale(x, scale = F)
n <- scale(x, center = F)

25.如何获取分位数?

x <- c (1 , 4 , 6 , 17 , 50 , 51 , 70 , 100)
quantile(x)
#    0%    25%    50%    75%   100% 
#  1.00   5.50  33.50  55.75 100.00

26.如何生成对角矩阵?

对一个向量使用 diag() 函数,得到对角线元素为向量的对角矩阵.

diag(3)
# [,1] [,2] [,3]
# [1,]    1    0    0
# [2,]    0    1    0
# [3,]    0    0    1

27. 如何构造上(下)三角矩阵?

使用lower.tri() 和 upper.tri()函数。

# 下三角矩阵
Rmat <- matrix(1:16, 4:4)
Rmat[upper.tri(Rmat)] <- 0
Rmat
# [,1] [,2] [,3] [,4]
# [1,]    1    0    0    0
# [2,]    2    6    0    0
# [3,]    3    7   11    0
# [4,]    4    8   12   16# 上三角矩阵
Rmat <- matrix(1:16, 4:4)
Rmat[lower.tri(Rmat)] <- 0
Rmat
# [,1] [,2] [,3] [,4]
# [1,]    1    5    9   13
# [2,]    0    6   10   14
# [3,]    0    0   11   15
# [4,]    0    0    0   16

28. 如何求矩阵各行 (列) 的均值?

使用 apply() 函数或colMeans() 函数。

n <- 5
m <- 4
# 构造5行,4列矩阵
mat <- matrix(1:m*n, m, n)
mat
# [,1] [,2] [,3] [,4] [,5]
# [1,]    5    5    5    5    5
# [2,]   10   10   10   10   10
# [3,]   15   15   15   15   15
# [4,]   20   20   20   20   20mat_mean <- matrix(apply(mat, 2, mean), m, n, by=T)
# 或 mat_mean <- matrix(colMeans(mat), m, n, by=T)mat_mean
# [,1] [,2] [,3] [,4] [,5]
# [1,] 12.5 12.5 12.5 12.5 12.5
# [2,] 12.5 12.5 12.5 12.5 12.5
# [3,] 12.5 12.5 12.5 12.5 12.5
# [4,] 12.5 12.5 12.5 12.5 12.5

29 如何求一元方程的根?

使用uniroot()函数,该函数基于二分法计算方程根,初始区间不满足求根条件,则会报错。

f <- function(x)x^3 - 2*x -1
uniroot(f, c(0,2))
# $root
# [1] 1.618018
# 
# $f.root
# [1] -9.17404e-05
# 
# $iter
# [1] 6
# 
# $init.it
# [1] NA
# 
# $estim.prec
# [1] 6.103516e-05

30. 如何在 R 里面求(偏)导数?

使用函数D()

f1 <- expression(sin(x)*x)
D(f1,"x")
# cos(x) * x + sin(x)f2 <- expression(x^2*y + y^2)
D(f2,"y")
# x^2 + 2 * y

31. 如何在 R 中计算高斯(正态)分布的概率计算?

如已知 X˜N(3, 1),计算P(2 ≤ X ≤ 5)。

# 利用正态分布的累积分布函数 pnorm
pnorm (5 ,3 , 1 ) − pnorm (2 ,3 ,1 )
# 计算结果为 0.8185946,即下图中阴影的面积。

32. R如何在保存文件时用变量替换文件名内容?

使用 paste() 函数。

save_string = "test"
for(var in range(1,3)){# paste("File_", var, ".txt", sep = "")为组合的文件名write.table(save_string , paste("File_", var, ".txt", sep = ""))
}

33. 如何在R中使用正则表达式?

使用 grep() 函数。

index <- grep("J.", month.abb)
# [1] 1 6 7
month.abb[index]
# [1] "Jan" "Jun" "Jul"

34. R语言如何截取字符串?

使用 substr() 函数。

str <- "abcdefg"
substr(str, 2, 4)
# [1] "bcd"
substring(str, 1:6, 1:3)
# [1] "a" "b" "c" ""  ""  ""

35. R语言如何对日期进行算术运算?

使用 difftime(arg) 函数, arg支持“auto”, “secs”, “mins”, “hours”, “days”, “weeks”参数。

d1 <- c("24/02/01")
d2 <- c("24/03/01")D1 <-as.Date(d1, "%y/%m/%d")
D2 <-as.Date(d2, "%y/%m/%d")difftime(D2, D1, units = "days")
# Time difference of 29 daysdifftime(D2, D1, units = "weeks")
# Time difference of 4.142857 weeks

36. R语言如何对系统时间进行格式化输出?

使用 format() 函数。

format((Sys.Date()), format="%A, %d %B %Y")

37. R语言如何在同一画面画出多张图?

推荐使用 layout() 函数。

layout(matrix(c(1, 1, 1,2, 3, 4), nr=2, byrow=T))
hist(rnorm(10, 0, 1), col = "VioletRed")
hist(rnorm(10, 0, 1), col = "VioletRed")
hist(rnorm(10, 0, 1), col = "VioletRed")
hist(rnorm(10, 0, 1), col = "VioletRed")

多张图布局效果

38. R语言如何设置图形边缘大小?

修改绘图参数 par(mar = c(bottom, left, top, right))

# 默认矩阵
par(mar = c(5, 4, 4, 2) + 0.1)

39. R语言 常用的 pch 符号都有哪些?

pch 是 plotting character 的缩写。pch 符号可以使用 “0 : 25” 来表示 26 个标识(参
看右图 “pch 符号”)。当然符号也可以使用#, %, ∗, |, +, −, ., o, O。值得注意的是,21 : 25
这几个符号可以在 points 函数使用不同的颜色填充(bg= 参数)。

pch编号对应图形

op <- par(bg = "light blue")
x <- seq(0, 2*pi, len=51)plot(x, sin(x), type="o", bg=par("bg"))
points(x, sin(x), pch=21, cex=1.5, bg="red")

绘制点图

40. R语言如何给图形加上图例?

绘制图形后,使用 legend函数。

# 查看自带isis数据集
head(iris)
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species
# 1          5.1         3.5          1.4         0.2  setosa
# 2          4.9         3.0          1.4         0.2  setosa
# 3          4.7         3.2          1.3         0.2  setosa
# 4          4.6         3.1          1.5         0.2  setosa
# 5          5.0         3.6          1.4         0.2  setosa
# 6          5.4         3.9          1.7         0.4  setosa
with(iris, plot(Sepal.Length, Sepal.Width, pch=as.numeric(Species), cex=1.2))table(iris$Species)
# setosa versicolor  virginica 
# 50         50         50 legend(6.1, 4.1, c("setosa", "versicolor", "virginica"),cex=1.5, pch=1:3)

图例

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/733678.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

嵌入式Linux串口和 poll() 函数的使用

一、poll() 函数的介绍 poll() 函数用于监控多个文件描述符的变化的函数。它可以用来检查一个或多个文件描述符的状态是否改变&#xff0c;比如是否可读、可写或有错误发生。它常用于处理 I/O 多路复用&#xff0c;这在需要同时处理多个网络连接或文件操作时非常有用。 头文件…

CentOS 7.6安装部署Seafile服务器

今天飞飞和你们分享CentOS 7.6上安装基于MySQL/MariaDB的Seafile服务器的方法&#xff0c;包括下载和安装7.0.5版本、配置数据库、启动服务器等步骤。安装成功后&#xff0c;需要通过nginx反向代理才能访问seafile服务。 通过预编译好的安装包来安装并运行基于 MySQL/MariaDB …

高吞吐SFTP连接池设计方案

背景 在现代的数据驱动环境中&#xff0c;安全文件传输协议&#xff08;SFTP&#xff09;扮演着至关重要的角色&#xff0c;它提供了一种安全、可靠的文件传输方式。我们目前项目是一个大型数据集成平台&#xff0c;跟上下游有很多文件对接是通过SFTP协议&#xff0c;当需要处…

果蔬作物疾病防治系统|基于Springboot的果蔬作物疾病防治系统设计与实现(源码+数据库+文档)

果蔬作物疾病防治系统目录 目录 基于Springboot的果蔬作物疾病防治系统设计与实现 一、前言 二、系统设计 三、系统功能设计 1、果蔬百科列表 2、公告信息管理 3、公告类型管理 四、数据库设计 1、实体ER图 五、核心代码 六、论文参考 七、最新计算机毕设选题推…

【蓝桥·算法双周赛】第七场分级赛——小白入门赛

2.霓虹【算法赛】 - 蓝桥云课 (lanqiao.cn) st数组用来存第i个位置&#xff0c;这个字母有没有编号j #include<bits/stdc.h> const int N1e610; using lllong long; std::map<std::string,std::string> mp;std::string a,aa; int st[N][10];// int stt[N][10];//对…

Qt 拖动事件

文章目录 1 自定义控件 TextEdit2 实现打开文件功能3 实现鼠标滚轮放大字体 QEvent::DragEnter 当拖动文件进入到窗口/控件中时&#xff0c;触发该事件&#xff0c;它对应的子类是QDragEnterEvent QEvent::DragLeave 当拖动文件离开窗口/控件时&#xff0c;触发该事件&#xff…

WordPress高端后台美化WP Adminify Pro优化版

后台UI美化WP Adminify Pro修改自定义插件&#xff0c;适合建站公司和个人使用&#xff0c;非常高大上&#xff0c;下载地址&#xff1a;WP Adminify Pro优化版 修复记录&#xff1a; 1、修复已知BUG 2、修复手机版兼容问题 3、修复打开速度&#xff0c;原版打开速度太慢 4…

自动裁剪人脸:简化你的数字人素材准备

在做数字人时,需要对采集的数据进行预处理,然后才能进行模型训练, 预处理常用的操作有:去背景 音频重采样 视频裁剪 音频特征提取等等,今天我们来分享一个自动化脚本: 对原图/视频进行人脸检测并根据目标尺寸以人脸为中心进行裁剪. 目录 1. 效果 2. 对图片进行裁剪 3.对视频…

DeepLearning in Pytorch|共享单车预测NN详解(思路+代码剖析)

目录 概要 一、代码概览 二、详解 基本逻辑 1.数据准备 2.设计神经网络 初版 改进版 测试 总结 概要 原文链接&#xff1a;DeepLearning in Pytorch|我的第一个NN-共享单车预测 我的第一个深度学习神经网络模型---利用Pytorch设计人工神经网络对某地区租赁单车的使用…

umi4 项目使用 keepalive 缓存页面(umi-plugin-keep-alive、react-activation)

umi4使用keepalive 配置文件config\config.ts export default defineConfig({plugins: [umi-plugin-keep-alive], });安装add umi-plugin-keep-alive yarn add umi-plugin-keep-alive页面 A import { KeepAlive, history, useAliveController } from umijs/max; const Page…

CSAPP Malloc lab

CSAPP Malloc Lab 目标 实现一个简单的动态存储分配器。 评分标准 空间利用率应当减少internal 和 external fragmentation. memory utilization memory utilization payload / heap size fragmentation internal fragmentation external fragmentation throughput T 越接…

【深度学习笔记】6_9 深度循环神经网络deep-rnn

注&#xff1a;本文为《动手学深度学习》开源内容&#xff0c;部分标注了个人理解&#xff0c;仅为个人学习记录&#xff0c;无抄袭搬运意图 6.9 深度循环神经网络 本章到目前为止介绍的循环神经网络只有一个单向的隐藏层&#xff0c;在深度学习应用里&#xff0c;我们通常会用…

嵌入式Qt 制作一个登录对话框

一.登录对话框需求分析 二.代码实现 main.c&#xff1a; #include <QtGui/QApplication> #include "widget.h"int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); }Widget.h&#xff1a; #ifndef _WIDGET_H_…

为什么选择 Flink 做实时处理

优质博文&#xff1a;IT-BLOG-CN 为什么选择 Flink 【1】流数据更真实地反映了我们的生活方式&#xff08;实时聊天&#xff09;&#xff1b; 【2】传统的数据架构是基于有限数据集的&#xff08;Spark 是基于微批次数据处理&#xff09;&#xff1b; 【3】我们的目标&#xf…

ELK-介绍及Elasticsearch集群搭建

ELK是三个开源软件的缩写&#xff0c;分别为Elasticsearch、Logstash、kibana它们都是开源软件。后来新增了一个FileBeat&#xff0c;它是一个轻量及的日志收集处理工具&#xff0c;因为Logstash由java程序开发&#xff0c;比较消耗内存资源&#xff0c;后来将Logstash使用go语…

【论文阅读】(2024.03.05-2024.03.15)论文阅读简单记录和汇总

(2024.03.05-2024.03.15)论文阅读简单记录和汇总 2024/03/05&#xff1a;随便简单写写&#xff0c;以后不会把太详细的记录在CSDN&#xff0c;有道的Markdown又感觉不好用。 目录 &#xff08;ICMM 2024&#xff09;Quality Scalable Video Coding Based on Neural Represent…

.net6Api后台+uniapp导出Excel

之前的这个是vue3写法&#xff0c;后端是.net6Api.net6Api后台VUE3前端实现上传和下载文件全过程_vue3 下载文件-CSDN博客 在现在看来似乎搞的复杂了&#xff0c;本次记录一下.net6Api后台uniapp导出Excel。 后端和之前的不一样&#xff0c;前端也和之前的不一样&#xff0c;…

【C语言】深入理解指针(进阶篇)

一、数组名的理解 数组名就是地址&#xff0c;而且是数组首元素的地址。 任务&#xff1a;运行以下代码&#xff0c;看数组名是否是地址。 #include <stdio.h> int main() {int arr[] { 1,2,3,4,5,6,7,8,9,0 };printf("&arr[0] %p\n", &arr[0]);pri…

IntelliJ IDEA Dev 容器

​一、dev 容器 开发容器&#xff08;dev 容器&#xff09;是一个 Docker 容器&#xff0c;配置为用作功能齐全的开发环境。 IntelliJ IDEA 允许您使用此类容器来编辑、构建和运行您的项目。 IntelliJ IDEA 还支持多个容器连接&#xff0c;这些连接可以使用 Docker Compose …

从零开始:神经网络(1)——神经元和梯度下降

声明&#xff1a;本文章是根据网上资料&#xff0c;加上自己整理和理解而成&#xff0c;仅为记录自己学习的点点滴滴。可能有错误&#xff0c;欢迎大家指正。 一. 神经网络 1. 神经网络的发展 先了解一下神经网络发展的历程。从单层神经网络&#xff08;感知器&#xff09;开…