贪心算法(greedy algorithm,又称贪婪算法)详解(附例题)

目录
    • 基本思想
    • 一)概念
    • 二)找出全局最优解的要求
    • 三)求解时应考虑的问题
    • 四)基本步骤
    • 五)贪心策略选择
    • 六)实际应用
      • 1.零钱找回问题
      • 2.背包问题
      • 3.哈夫曼编码
      • 4.单源路径中的Djikstra算法
      • 5.最小生成树Prim算法

基本思想

贪心算法(Greedy Algorithm)是一种在求解问题时,每一步都选择当前最优解,以期望最终得到全局最优解的算法思想。贪心算法的基本思想可以总结为“每一步都做出一个局部最优的选择,最终就能得到全局最优解”。

贪心算法通常包含以下关键步骤:

找到可选的子问题: 首先,将原问题拆分成一系列可选的子问题或决策。

找到局部最优解: 对每个子问题,找到一个局部最优解。这个局部最优解应该是一个贪心选择,即在当前状态下选择最优的方式。

合并子问题的解: 将各个子问题的局部最优解合并起来,得到原问题的解。

检查解的有效性: 最后,检查得到的解是否满足问题的约束和要求。如果满足,就认为得到了问题的解。

贪心算法适用于一些特定类型的问题,通常要求问题具有贪心选择性质(即每一步的选择都是最优的),以及最优子结构性质(即问题的最优解可以通过子问题的最优解推导得出)。然而,贪心算法不一定能够求解所有问题,有些问题可能需要更复杂的算法来解决。

经典的贪心算法问题有找零钱问题、活动选择问题、背包问题中的部分背包等。贪心算法在求解这些问题时,通常能够得到接近最优解的结果,但并不保证一定能够得到全局最优解。

总之,贪心算法是一种基于每一步的局部最优选择来求解问题的思想,适用于一些满足贪心选择性质和最优子结构性质的问题。

一)概念

贪心算法(Greedy Alogorithm)又叫登山算法,它的根本思想是逐步到达山顶,即逐步获得最优解,是解决最优化问题时的一种简单但是适用范围有限的策略。

贪心算法没有固定的框架,算法设计的关键是贪婪策略的选择。贪心策略要无后向性,也就是说某状态以后的过程不会影响以前的状态,只与当前状态有关。

贪心算法是对某些求解最优解问题的最简单、最迅速的技术。某些问题的最优解可以通过一系列的最优的选择即贪心选择来达到。但局部最优并不总能获得整体最优解,但通常能获得近似最优解

在每一步贪心选择中,只考虑当前对自己最有利的选择,而不去考虑在后面看来这种选择是否合理。

二)找出全局最优解的要求

在遇见问题时如何确定是否可以使用贪心算法解决问题,那么决定一个贪心算法是否能找到全局最优解的条件是什么呢?其实就是以下两点:

  • 最优子结构(optimal subproblem structure,和动态规划中的是一个概念)
  • 最优贪心选择属性(optimal greedy choice property)

三)求解时应考虑的问题

1.候选集合S
为了构造问题的解决方案,有一个候选集合C作为问题的可能解,问题的最终解均取自于候选集合C。
2.解集合S
随着贪心选择的进行,解集合不断扩展,直到构成一个满足问题的完整解。
3.解决函数solution
检查解集合是否构成问题的完整解。
4.选择函数select
即贪心策略,这是贪心算法的关键,它指出哪个候选对象有希望构成成问题的解。
5.可行函数feasible
检查解集合中加入一个候选对象是否可行,即解集合扩展后是否满足约束条件。

四)基本步骤

贪心算法使用基本步骤:
1.从问题的某个初始解出发
2.采用循环语句,当可以向求解目标前进一步时,就根据局部最优策略,得到一个部分解,缩小问题的范围或规模。
3.将所有的部分解综合起来,得到问题的最终解。

五)贪心策略选择

贪心算法的原理是通过局部最优来达到全局最优,采用的是逐步构造最优解的方法。在每个阶段,都做出一个看上去最优的,决策一旦做出,就不再更改。

要选出最优解可不是一件容易的事,要证明局部最优为全局最优,要进行数学证明,否则就不能说明为全局最优。

很多问题表面上看来用贪心算法可以找到最优解,实际上却把最优解给漏掉了。这就像现实生活中的“贪小便宜吃大亏”。所以我们在解决问题的时候,一定要谨慎使用贪心算法,一定要注意这个问题适不适合采用贪心算法

贪心算法很多时候并不能达到全局最优,为什么我们还要使用它呢?

因为在很多大规模问题中,寻找最优解是一件相当费时耗力的事情,有时候付出大量人力物力财力后,回报并不与投入成正比。在这个时候选择相对最优的贪心算法就比较经济可行了。有的问题对最优的要求不是很高,在充分衡量付出和回报后,选择贪心算法未尝不是一种不错的选择呢。

六)实际应用

1.零钱找回问题

这个问题在我们的日常生活中就更加普遍了。假设1元、2元、5元、10元、20元、50元、100元的纸币分别有c0, c1, c2, c3, c4, c5, c6张。现在要用这些钱来支付K元,至少要用多少张纸币?用贪心算法的思想,很显然,每一步尽可能用面值大的纸币即可。在日常生活中我们自然而然也是这么做的。在程序中已经事先将Value按照从小到大的顺序排好。
下面展示一些 内联代码片

#include<iostream>
#include<algorithm>
using namespace std;
const int N=7; 
int Count[N]={3,0,2,1,0,3,5};
int Value[N]={1,2,5,10,20,50,100};int solve(int money) 
{int num=0;for(int i=N-1;i>=0;i--) {int c=min(money/Value[i],Count[i]);money=money-c*Value[i];num+=c;}if(money>0) num=-1;return num;
}int main() 
{int money;cin>>money;int res=solve(money);if(res!=-1) cout<<res<<endl;else cout<<"NO"<<endl;
}
2.背包问题

在 从零开始学动态规划中我们已经谈过三种最基本的背包问题:零一背包,部分背包,完全背包。很容易证明,背包问题不能使用贪心算法。然而我们考虑这样一种背包问题:在选择物品i装入背包时,可以选择物品的一部分,而不一定要全部装入背包。这时便可以使用贪心算法求解了。计算每种物品的单位重量价值作为贪心选择的依据指标,选择单位重量价值最高的物品,将尽可能多的该物品装入背包,依此策略一直地进行下去,直到背包装满为止。在零一背包问题中贪心选择之所以不能得到最优解原因是贪心选择无法保证最终能将背包装满,部分闲置的背包空间使每公斤背包空间的价值降低了。在程序中已经事先将单位重量价值按照从大到小的顺序排好。

#include<iostream>   
using namespace std;   
const int N=4;  
void knapsack(float M,float v[],float w[],float x[]);  int main()  
{  float M=50;//背包所能容纳的重量   float w[]={0,10,30,20,5};//每种物品的重量  float v[]={0,200,400,100,10};  //每种物品的价值 float x[N+1]={0};  //记录结果的数组 knapsack(M,v,w,x);  cout<<"选择装下的物品比例:"<<endl;  for(int i=1;i<=N;i++) cout<<"["<<i<<"]:"<<x[i]<<endl;  
}  void knapsack(float M,float v[],float w[],float x[])  
{  int i;  //物品整件被装下  for(i=1;i<=N;i++){  if(w[i]>M) break;   x[i]=1;  M-=w[i];  }   //物品部分被装下  if(i<=N) x[i]=M/w[i];   
} 
3.哈夫曼编码

假设有一系列的字符,我们希望用一些二进制码来代替这些字符以进行数据压缩,使得压缩后的总比特数最小。哈夫曼编码正是这样一样压缩数据的方式。

在这里插入图片描述

如果我们已知各字符在文本中的出现频率,考虑到为了让压缩后的数据更小,我们直觉是让出现频率高的字符用尽可能短的编码,而出现频率高的则可以用更长的编码。

哈夫曼编码的解决方案是这样的:不断找到当前出现频率最小的两个结点(字符或频率),将它们结合,作为一个新生成的结点的左右子结点,并将新生成的结点继续放入比较,直到没有落单的字符。

过程演示

该贪心算法针对这个问题得到的解是最优的。

4.单源路径中的Djikstra算法

求A到其他节点的最短路径:
在这里插入图片描述
维护三个东西,从A到其他节点的路径长度队列Queue,数组visited用于记录已保存最短路径的节点,数组res用于记录节点A到其他节点的最短路径。
开始时,Queue中只有A节点自己,三组数据如下:
Queue:[(A, 0)] 起始节点为A,A到A的距离为0
visited:[true, false,false,false,false] A节点是已经访问过的节点,是true,其他节点是false
res:[0,∞,∞,∞,∞] A到自己的距离是0,到其他节点的距离目前是∞

将以A为起点的路径加入到Queue中,2和4是节点D和B的路径权重:
Queue:[(D, 2), (B, 4)]
visited:[true, false,false,false,false]
res:[0,∞,∞,∞,∞]
在Queue中,路径最短的是D,取出D,更新三组数据:
Queue:[(B, 3), (C, 3), (E, 9)]

因为A-D-B的路径权重为3小于A-B的路径权重4,所以更新一下B的路径权重。
visited:[true,false,false,true,false]
res: [0,∞, ∞,2,∞]

取出B,更新三组数据:
Queue: [(C,3), (E, 9)]
visited: [true,true,false,true,false]
res: [0,3, ∞,2, ∞]

取出C,更新三组数据:
Queue:[(E, 6)]
visited: [true,true,true,true,false]
res: [0,3, 3,2, ∞]

取出E,更新三组数据:
Queue:[]
visited: [true,true,true,true,true]
res: [0,3, 3,2, 6]

至此,Queue队列空,计算过程结束。

5.最小生成树Prim算法

prim算法(读者可以将其读作“普里姆算法”)用来解决最小生成树问题,其基本思想是对图G(V,E)设置集合S,存放已被访问的顶点,然后每次从集合V-S中选择与集合S的最短距离最小的一个顶点(记为u),访问并加入集合S。之后,令顶点u为中介点,优化所有从u能到达的顶点v与集合S之间的最短距离。这样的操作执行n次(n为顶点个数),直到集合S已包含所有顶点。可以发现,prim算法的思想与最短路径中Dijkstra算法的思想几乎完全相同,只是在涉及最短距离时使用了集合S代替 Dijkstra算法中的起点s。

在这里插入图片描述

①将地图上的所有边都抹去,只有当访问一个顶点后オ把这个顶点顶点连接的边显现(这点和Dijkstra算法中相同)。

②将已访问的顶点置于ー个巨型防护罩中。可以沿着这个防护罩连接的边去访问未到达的顶点

③在地图中的顶点V(0≤i≤5)上记录顶点V与巨型防护罩之间的最短距离(即V与每个访问的顶点之间距离的最小值)。由于在①把所有边都抹去了,因此在初始状态下只在顶点V0上标记0,而其他顶点都标记无穷大(记为INF)。为了方便叙述,在下文中某几处出现的最短距离都是指从顶点V与当前巨型防护罩之间的最短距离。

下面是行动策略:

①由于要访问六个顶点,因此将②③步骤执行六次,每次访问一个顶点(如果是n个顶点,那么就执行n次)。

②每次都从还未访问的顶点中选择与当前巨型防护罩最近的顶点(记为Vk(0≤k≤5)),使用“爆裂模式”的能力恢复这条最近的边(并成为最小生成树中的一条边),前往访问。

③访问顶点Vk后,将Vk加入巨型防护罩中,开放地图上Vk连接的所有边,并査看以Vk作为巨型防护罩连接外界的接口的情况下,能否利用Vk刚开放的边使某些还未访问的顶点与巨型防护罩的最短距离变小。如果能,则将那个最短距离覆盖到地图对应的顶点上。

另外,为了得到最小生成树的边权之和,需要在访问顶点之前设置一个初值为0的变量sum,并在攻打过程中将加入最小生成树中的边的边权累加起来。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/731125.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TCP包头

TCP包头: 1.序号:发送端发送数据包的编号 2.确认号:已经确认接收到的数据的编号(只有当ACK为1时,确认号才有用) TCP为什么安全可靠: 1.在通信前建立三次握手连接 SYN SYNACK ACK SYN是TCP包头的一个字段 tcp.port 端口号 抓包数据 2.在通信过程中通过序…

使用Apache Kafka的Golang实践指南

您是否在寻找构建可扩展、高性能应用程序的方法&#xff0c;这些应用程序可以实时处理流数据&#xff1f;如果是的话&#xff0c;结合使用Apache Kafka和Golang是一个很好的选择。Golang的轻量级线程非常适合编写类似Kafka生产者和消费者的并发网络应用程序。它的内置并发原语&…

探索HTTP协议:网络通信的基石

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

【CSP试题回顾】202109-2-非零段划分

CSP-202109-2-非零段划分 关键点&#xff1a;差分数组 详见&#xff1a;【CSP考点回顾】差分数组 时间复杂度分析 使用差分数组的优势在于&#xff0c;它将问题转化为了在一次遍历中识别并利用关键变化点&#xff08;波峰和波谷&#xff09;&#xff0c;从而避免了对每个可能…

Mysql中的MVCC

”真正学会&#xff0c;如你般自由~“ MVCC机制简介 MVCC(Multi-Version-Concurrency-Control)多版本并发控制&#xff0c;MVCC 是一种并发控制的方法&#xff0c;一般在数据库管理系统中&#xff0c;实现对数据库的并发访问&#xff1b;在编程中实现事务内存。 取自 MVCC存在被…

某准网招聘接口逆向之WebPack扣取

​​​​​逆向网址 aHR0cHM6Ly93d3cua2Fuemh1bi5jb20v 逆向链接 aHR0cHM6Ly93d3cua2Fuemh1bi5jb20vc2VhcmNoP3BhZ2VOdW09MSZxdWVyeT1weXRob24mdHlwZT01 逆向接口 aHR0cHM6Ly93d3cua2Fuemh1bi5jb20vYXBpX3RvL3NlYXJjaC9qb2IuanNvbg 逆向过程 请求方式&#xff1a;GET 参数构成…

Clickhouse表引擎介绍

作者&#xff1a;俊达 1 引擎分类 ClickHouse表引擎一共分为四个系列&#xff0c;分别是Log、MergeTree、Integration、Special。其中包含了两种特殊的表引擎Replicated、Distributed&#xff0c;功能上与其他表引擎正交&#xff0c;根据场景组合使用。 2 Log系列 Log系列…

k8s-生产级的k8s高可用(1) 24

高可用集群 实验至少需要三个master&#xff08;控制节点&#xff09;&#xff0c;一个可以使外部可以访问到master的load balancer&#xff08;负载均衡&#xff09;以及一个或多个外部节点worker&#xff08;也要部署高可用&#xff09;。 再克隆三台主机 清理并重启 配置两…

LayerNorm的图是不是画错了

这是网上一张很流行的说明几个 Normalization 区别的图 这图出自Kaiming的文章 Group Norm 但是他这个 Layer Norm 的图是不是画错了? 我大四写毕设的时候就想问&#x1f923;&#x1f923;&#x1f923; 这都几年过去了 我觉得图应该是这样画的&#xff0c;相同颜色的区域…

VSCode搭建ARM开发环境

为了构建Cortex M系列单片机免费开源的开发环境&#xff0c;网络上了解来看VSCODEGCCJLINK是一套比较高效的组合方式&#xff0c;下面记录环境搭建的流程。 我这边的PC环境为 WIN7专业版64bit。 需要用到的工具 Visual Studio CodeSTM32CubemxARM GCC 交叉编译工具链&#x…

cadence 之 Allegro PCB封装 3D模型

Allegro PCB封装怎样赋3D模型 1、方式一 —— 设置器件高度 2、方式二 —— 指定STEP模型 2.1、Step 3D模型库 2.2、软件环境的设置和 STEP 模型库路径设置 D:\Cadence\Cadence_SPB_17.4-2019\share\local\pcb\step 2.3、指定STEP模型 即可打开 STEP 模型指定的对话框&…

【理解】STM32一键下载电路

1.MCUISP 串口软件一键下载设置&#xff1a; DTR 低电平复位&#xff0c;RTS 高电平进入boot load 串口下载 在ch340 芯片对应DTR 和RTS 输出电平与电脑软件设置的电平相反。 一键下载电路根据ch340 芯片对应引脚的控制信号完成对应功能 具体实现过程如下&#xff1a; 2.单…

VR数字化线上展馆降低企业投入成本和周期

VR云展会是一种全新的展览形式&#xff0c;它利用虚拟现实技术&#xff0c;将实体展览搬到线上&#xff0c;让观众可以在家中就能参观各种展览。这种新型的展览方式有许多亮点&#xff0c;下面就来详细介绍一下。 首先&#xff0c;VR云展会打破了地域限制。传统的实体展览通常只…

WPF 消息提示 类似toast方式

WPF里面的消息提示一般都是MessageBox.Show()&#xff0c;这种样式不是很好看&#xff0c;所以就想办法重新搞了一个类似弹出消息的功能。原理很简单&#xff0c;就是弹出一个新窗体&#xff0c;然后等几秒窗体自动关闭。 先上效果图&#xff1a; 新建一个MsgHelper.cs类&…

海外互联网专线主要解决企业哪些办公问题?

海外互联网专线 是一种专门为跨境企业提供的网络连接服务&#xff0c;旨在解决企业在海外办公过程中遇到的各种网络问题。海外互联网专线如何成为解决企业办公难题的利器&#xff0c;为企业提供稳定、高速的网络连接? 1、跨国远程办公&#xff1a; 随着全球化进程的加速&…

Android应用界面

概述&#xff1a;由于学校原因&#xff0c;估计会考&#xff0c;曹某人就浅学一下。 目录 View概念 创建和使用布局文件 相对布局 线性布局 水平线性布局 垂直线性布局 表格布局 帧布局 扁平化布局 Android控件详解 AdapterView及其子类 View概念 安卓中的View是所…

Codesys.运动控制电子齿轮

文章目录 一. 电子齿轮概念应用 二. 电子齿轮耦合功能块 2.1. MC_GearIn 2.2. MC_GearInPos 2.3. MC_GearOut 三. 电子齿轮案例 3.1. 样例介绍 3.2. 引入虚轴 3.3. 程序框架 3.4. 程序编写 3.5. 程序监控 一. 电子齿轮概念应用 在很多应用场景中有多个牵引轴每个牵引…

【重温设计模式】备忘录模式及其Java示例

备忘录模式的概述 在软件设计的世界中&#xff0c;备忘录模式是一种行为设计模式&#xff0c;它的主要作用是保存对象的当前状态&#xff0c;以便在将来的某个时间点&#xff0c;可以将对象恢复到这个保存的状态。这种模式的命名源于生活中的备忘录&#xff0c;我们常常用它来…

俄罗斯方块h5源码

上传源码至服务器和空间即可使用&#xff0c;源码无后门&#xff0c;就一天html文件&#xff0c;一个两个css文件以及一个js文件 源码下载&#xff1a;https://download.csdn.net/download/m0_66047725/88897605 更多资源下载&#xff1a;关注我。

148个Chatgpt关键词汇总-有爱AI实战教程(二)

演示站点&#xff1a; https://ai.uaai.cn 技能模块 官方论坛&#xff1a; www.jingyuai.com 京娱AI 导读&#xff1a;在使用 ChatGPT 时&#xff0c;当你给的指令越精确&#xff0c;它的回答会越到位&#xff0c;举例来说&#xff0c;假如你要请它帮忙写文案&#xff0c;如…