Clickhouse表引擎介绍

作者:俊达

1 引擎分类

ClickHouse表引擎一共分为四个系列,分别是Log、MergeTree、Integration、Special。其中包含了两种特殊的表引擎Replicated、Distributed,功能上与其他表引擎正交,根据场景组合使用。
在这里插入图片描述

2 Log系列

Log系列表引擎功能相对简单,主要用于快速写入小表(1百万行左右的表),然后全部读出的场景。
几种Log表引擎的共性是:

数据被顺序append写到磁盘上。

不支持delete、update。

不支持index。

不支持原子性写。

insert会阻塞select操作。

它们彼此之间的区别是:

TinyLog:不支持并发读取数据文件,查询性能较差;格式简单,适合用来暂存中间数据。

StripLog:支持并发读取数据文件,查询性能比TinyLog好;将所有列存储在同一个大文件中,减少了文件个数。

Log:支持并发读取数据文件,查询性能比TinyLog好;每个列会单独存储在一个独立文件中。

3 Integration系列

该系统表引擎主要用于将外部数据导入到ClickHouse中,或者在ClickHouse中直接操作外部数据源。
Kafka:将Kafka Topic中的数据直接导入到ClickHouse。

MySQL:将Mysql作为存储引擎,直接在ClickHouse中对MySQL表进行select等操作。

JDBC/ODBC:通过指定jdbc、odbc连接串读取数据源。

HDFS:直接读取HDFS上的特定格式的数据文件;

Special系列:Special系列的表引擎,大多是为了特定场景而定制的:

Memory:将数据存储在内存中,重启后会导致数据丢失。查询性能极好,适合于对于数据持久性没有要求的1亿以下的小表。在ClickHouse中,通常用来做临时表。

Buffer:为目标表设置一个内存buffer,当buffer达到了一定条件之后会flush到磁盘。

File:直接将本地文件作为数据存储。

Null:写入数据被丢弃、读取数据为空。

4 MergeTree系列

(1)MergeTree

MergeTree表引擎主要用于海量数据分析,支持数据分区、存储有序、主键索引、稀疏索引、数据TTL等。MergeTree支持所有ClickHouse SQL语法,但是有些功能与MySQL并不一致,比如在MergeTree中主键并不用于去重。

数据TTL

1、基本语法

TTL time_col + INTERVAL ${num} [SECOND|MONTH]

目前TTL可对具体指定列级别、或者表级别进行设置,但是设置后无法取消。

2、实现原理

1)TTL处理逻辑

若表定义中设置了TTL相关设置,在数据写入时,在分区目录下会额外生成一个ttl.txt文件,该文件通过json的格式记录了当前表列级别、表级别的TTL设置,以及当前分区目录下TTL指定时间字段的最小最大值。

MergeTree 以分区目录为单位,通过 ttl.txt文件记录过期时间,并将其作为后续的 判断依据 。

每当写入一批数据时,都会基于INTERVAL表达式的计算结果为这个分区生成 ttl. txt 文件 。

只有在MergeTree合并分区时,才会触发删除 TTL过期数据的逻辑。

在选择删除的分区时,会使用贪婪算法,它的算法规则是尽可能找到会最早过期 的,同时年纪又是最老的分区(合并次数更多 , MaxBlockNum更大的分区目录) 。

如果一个分区内某一列数据因为 TTL 到期全部被删除了,那么在合并之后生成的 新分区目录中,将不会包含这个列字段的数据文件( .bin 和 .mrk)。

2)如何触发TTL

TTL默认合并频率,由参数merge_with_ttl_timeout控制

使用 optimize命令强制触发合并

-- 触发一个分区的合并
optimize TABLE table_name-- 触发所有分区的合并
optimize TABLE table_name FINAL

(2)ReplacingMergeTree

为了解决MergeTree相同主键无法去重的问题,ClickHouse提供了ReplacingMergeTree引擎,用来做去重。虽然ReplacingMergeTree提供了主键去重的能力,但是仍旧有以下限制:

在没有彻底optimize之前,可能无法达到主键去重的效果,比如部分数据已经被去重,而另外一部分数据仍旧有主键重复。

在分布式场景下,相同primary key的数据可能被sharding到不同节点上,不同shard间可能无法去重。

optimize是后台动作,无法预测具体执行时间点。

手动执行optimize在海量数据场景下要消耗大量时间,无法满足业务即时查询的需求。

ReplacingMergeTree更多被用于确保数据最终被去重,而无法保证查询过程中主键不重复。

(3)SummingMergeTree

ClickHouse通过SummingMergeTree来支持对主键列进行预先聚合。在后台Compaction时,会将主键相同的多行进行sum求和,然后使用一行数据取而代之,从而大幅度降低存储空间占用,提升聚合计算性能。值得注意的是:

ClickHouse只在后台Compaction时才会进行数据的预先聚合,而compaction的执行时机无法预测,所以可能存在部分数据已经被预先聚合、部分数据尚未被聚合的情况。因此,在执行聚合计算时,SQL中仍需要使用GROUP BY子句。

在预先聚合时,ClickHouse会对主键列之外的其他所有列进行预聚合。如果这些列是可聚合的(比如数值类型),则直接sum;如果不可聚合(比如String类型),则随机选择一个值。

通常建议将SummingMergeTree与MergeTree配合使用,使用MergeTree来存储具体明细,使用SummingMergeTree来存储预先聚合的结果加速查询。

-- 建表
CREATE TABLE summtt
(key UInt32,value UInt32
)
ENGINE = SummingMergeTree()
ORDER BY key-- 插入数据
INSERT INTO summtt Values(1,1),(1,2),(2,1)-- compaction前查询,仍存在多行
select * from summtt;
┌─key─┬─value─┐
│   11 │
│   12 │
│   21 │
└─────┴───────┘-- 通过GROUP BY进行聚合计算
SELECT key, sum(value) FROM summtt GROUP BY key
┌─key─┬─sum(value)─┐
│   21 │
│   13 │
└─────┴────────────┘-- 强制compaction
optimize table summtt final;-- compaction后查询,可以看到数据已经被预先聚合
select * from summtt;
┌─key─┬─value─┐
│   13 │
│   21 │
└─────┴───────┘-- compaction后,仍旧需要通过GROUP BY进行聚合计算
SELECT key, sum(value) FROM summtt GROUP BY key
┌─key─┬─sum(value)─┐
│   21 │
│   13 │
└─────┴────────────┘

(4)AggregatingMergeTree

AggregatingMergeTree也是预先聚合引擎的一种,用于提升聚合计算的性能。与SummingMergeTree的区别在于:SummingMergeTree对非主键列进行sum聚合,而AggregatingMergeTree则可以指定各种聚合函数。

AggregatingMergeTree的语法比较复杂,需要结合物化视图或ClickHouse的特殊数据类型AggregateFunction一起使用。在insert和select时,也有独特的写法和要求:写入时需要使用-State语法,查询时使用-Merge语法。

示例一:配合物化视图使用。

-- 建立明细表
CREATE TABLE visits
(UserID UInt64,CounterID UInt8,StartDate Date,Sign Int8
)
ENGINE = CollapsingMergeTree(Sign)
ORDER BY UserID;-- 对明细表建立物化视图,该物化视图对明细表进行预先聚合
-- 注意:预先聚合使用的函数分别为: sumState, uniqState。对应于写入语法<agg>-State.
CREATE MATERIALIZED VIEW visits_agg_view
ENGINE = AggregatingMergeTree() PARTITION BY toYYYYMM(StartDate) ORDER BY (CounterID, StartDate)
AS SELECTCounterID,StartDate,sumState(Sign)    AS Visits,uniqState(UserID) AS Users
FROM visits
GROUP BY CounterID, StartDate;-- 插入明细数据
INSERT INTO visits VALUES(0, 0, '2019-11-11', 1);
INSERT INTO visits VALUES(1, 1, '2019-11-12', 1);-- 对物化视图进行最终的聚合操作
-- 注意:使用的聚合函数为 sumMerge, uniqMerge。对应于查询语法<agg>-Merge.
SELECTStartDate,sumMerge(Visits) AS Visits,uniqMerge(Users) AS Users
FROM visits_agg_view
GROUP BY StartDate
ORDER BY StartDate;-- 普通函数 sum, uniq不再可以使用
-- 如下SQL会报错: Illegal type AggregateFunction(sum, Int8) of argument 
SELECTStartDate,sum(Visits),uniq(Users)
FROM visits_agg_view
GROUP BY StartDate
ORDER BY StartDate;

示例二:配合特殊数据类型AggregateFunction使用。

-- 建立明细表
CREATE TABLE detail_table
(   CounterID UInt8,StartDate Date,UserID UInt64
) ENGINE = MergeTree() 
PARTITION BY toYYYYMM(StartDate) 
ORDER BY (CounterID, StartDate);-- 插入明细数据
INSERT INTO detail_table VALUES(0, '2019-11-11', 1);
INSERT INTO detail_table VALUES(1, '2019-11-12', 1);-- 建立预先聚合表,
-- 注意:其中UserID一列的类型为:AggregateFunction(uniq, UInt64)
CREATE TABLE agg_table
(   CounterID UInt8,StartDate Date,UserID AggregateFunction(uniq, UInt64)
) ENGINE = AggregatingMergeTree() 
PARTITION BY toYYYYMM(StartDate) 
ORDER BY (CounterID, StartDate);-- 从明细表中读取数据,插入聚合表。
-- 注意:子查询中使用的聚合函数为 uniqState, 对应于写入语法<agg>-State
INSERT INTO agg_table
select CounterID, StartDate, uniqState(UserID)
from detail_table
group by CounterID, StartDate-- 不能使用普通insert语句向AggregatingMergeTree中插入数据。
-- 本SQL会报错:Cannot convert UInt64 to AggregateFunction(uniq, UInt64)
INSERT INTO agg_table VALUES(1, '2019-11-12', 1);-- 从聚合表中查询。
-- 注意:select中使用的聚合函数为uniqMerge,对应于查询语法<agg>-Merge
SELECT uniqMerge(UserID) AS state 
FROM agg_table 
GROUP BY CounterID, StartDate;

(5)CollapsingMergeTree

ClickHouse实现了CollapsingMergeTree来消除ReplacingMergeTree的功能限制。该引擎要求在建表语句中指定一个标记列Sign,后台Compaction时会将主键相同、Sign相反的行进行折叠,也即删除。

CollapsingMergeTree将行按照Sign的值分为两类:Sign=1的行称之为状态行,Sign=-1的行称之为取消行。

每次需要新增状态时,写入一行状态行;需要删除状态时,则写入一行取消行。

在后台Compaction时,状态行与取消行会自动做折叠(删除)处理。而尚未进行Compaction的数据,状态行与取消行同时存在。

因此为了能够达到主键折叠(删除)的目的,需要业务层进行适当改造:

执行删除操作需要写入取消行,而取消行中需要包含与原始状态行主键一样的数据(Sign列除外)。所以在应用层需要记录原始状态行的值,或者在执行删除操作前先查询数据库获取原始状态行。

由于后台Compaction时机无法预测,在发起查询时,状态行和取消行可能尚未被折叠;另外,ClickHouse无法保证primary

key相同的行落在同一个节点上,不在同一节点上的数据无法折叠。因此在进行count()、sum(col)等聚合计算时,可能会存在数据冗余的情况。为了获得正确结果,业务层需要改写SQL,将count()、sum(col)分别改写为sum(Sign)、sum(col Sign)。

CollapsingMergeTree虽然解决了主键相同的数据即时删除的问题,但是状态持续变化且多线程并行写入情况下,状态行与取消行位置可能乱序,导致无法正常折叠。

-- 建表
CREATE TABLE UAct
(UserID UInt64,PageViews UInt8,Duration UInt8,Sign Int8
)
ENGINE = CollapsingMergeTree(Sign)
ORDER BY UserID;-- 插入状态行,注意sign一列的值为1
INSERT INTO UAct VALUES (4324182021466249494, 5, 146, 1);-- 插入一行取消行,用于抵消上述状态行。注意sign一列的值为-1,其余值与状态行一致;
-- 并且插入一行主键相同的新状态行,用来将PageViews从5更新至6,将Duration从146更新为185.
INSERT INTO UAct VALUES (4324182021466249494, 5, 146, -1), (4324182021466249494, 6, 185, 1);-- 查询数据:可以看到未Compaction之前,状态行与取消行共存。
SELECT * FROM UAct;
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 43241820214662494945146-1 │
│ 432418202146624949461851 │
└─────────────────────┴───────────┴──────────┴──────┘
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 432418202146624949451461 │
└─────────────────────┴───────────┴──────────┴──────┘-- 为了获取正确的sum值,需要改写SQL: 
-- sum(PageViews) => sum(PageViews * Sign)、 
-- sum(Duration) => sum(Duration * Sign)
SELECTUserID,sum(PageViews * Sign) AS PageViews,sum(Duration * Sign) AS Duration
FROM UAct
GROUP BY UserID
HAVING sum(Sign) > 0;
┌──────────────UserID─┬─PageViews─┬─Duration─┐
│ 43241820214662494946185 │
└─────────────────────┴───────────┴──────────┘-- 强制后台Compaction
optimize table UAct final;-- 再次查询,可以看到状态行、取消行已经被折叠,只剩下最新的一行状态行。
select * from UAct;
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 432418202146624949461851 │
└─────────────────────┴───────────┴──────────┴──────┘

多线程并发写入下导致数据混乱的示例

-- 建表
CREATE TABLE UAct_order
(UserID UInt64,PageViews UInt8,Duration UInt8,Sign Int8
)
ENGINE = CollapsingMergeTree(Sign)
ORDER BY UserID;-- 先插入取消行
INSERT INTO UAct_order VALUES (4324182021466249495, 5, 146, -1);
-- 后插入状态行
INSERT INTO UAct_order VALUES (4324182021466249495, 5, 146, 1);-- 强制Compaction
optimize table UAct_order final;-- 可以看到即便Compaction之后也无法进行主键折叠: 2行数据仍旧都存在。
select * from UAct_order;
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 43241820214662494955146-1 │
│ 432418202146624949551461 │
└─────────────────────┴───────────┴──────────┴──────┘

(6)VersionedCollapsingMergeTree

为了解决CollapsingMergeTree乱序写入情况下无法正常折叠问题,VersionedCollapsingMergeTree表引擎在建表语句中新增了一列Version,用于在乱序情况下记录状态行与取消行的对应关系。主键相同,且Version相同、Sign相反的行,在Compaction时会被删除。与CollapsingMergeTree类似, 为了获得正确结果,业务层需要改写SQL,将count()、sum(col)分别改写为sum(Sign)、sum(col * Sign)。

-- 建表
CREATE TABLE UAct_version
(UserID UInt64,PageViews UInt8,Duration UInt8,Sign Int8,Version UInt8
)
ENGINE = VersionedCollapsingMergeTree(Sign, Version)
ORDER BY UserID;-- 先插入一行取消行,注意Signz=-1, Version=1
INSERT INTO UAct_version VALUES (4324182021466249494, 5, 146, -1, 1);-- 后插入一行状态行,注意Sign=1, Version=1;及一行新的状态行注意Sign=1, Version=2,将PageViews从5更新至6,将Duration从146更新为185。
INSERT INTO UAct_version VALUES (4324182021466249494, 5, 146, 1, 1),(4324182021466249494, 6, 185, 1, 2);-- 查询可以看到未compaction情况下,所有行都可见。
SELECT * FROM UAct_version;
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 43241820214662494945146-1 │
│ 432418202146624949461851 │
└─────────────────────┴───────────┴──────────┴──────┘
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 432418202146624949451461 │
└─────────────────────┴───────────┴──────────┴──────┘-- 为了获取正确的sum值,需要改写SQL: 
-- sum(PageViews) => sum(PageViews * Sign)、 
-- sum(Duration) => sum(Duration * Sign)
SELECTUserID,sum(PageViews * Sign) AS PageViews,sum(Duration * Sign) AS Duration
FROM UAct_version
GROUP BY UserID
HAVING sum(Sign) > 0;
┌──────────────UserID─┬─PageViews─┬─Duration─┐
│ 43241820214662494946185 │
└─────────────────────┴───────────┴──────────┘-- 强制后台Compaction
optimize table UAct_version final;-- 再次查询,可以看到即便取消行与状态行位置乱序,仍旧可以被正确折叠。
select * from UAct_version;
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┬─Version─┐
│ 4324182021466249494618512 │
└─────────────────────┴───────────┴──────────┴──────┴─────────┘

更多技术信息请查看云掣官网https://yunche.pro/?t=yrgw

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/731116.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

k8s-生产级的k8s高可用(1) 24

高可用集群 实验至少需要三个master&#xff08;控制节点&#xff09;&#xff0c;一个可以使外部可以访问到master的load balancer&#xff08;负载均衡&#xff09;以及一个或多个外部节点worker&#xff08;也要部署高可用&#xff09;。 再克隆三台主机 清理并重启 配置两…

LayerNorm的图是不是画错了

这是网上一张很流行的说明几个 Normalization 区别的图 这图出自Kaiming的文章 Group Norm 但是他这个 Layer Norm 的图是不是画错了? 我大四写毕设的时候就想问&#x1f923;&#x1f923;&#x1f923; 这都几年过去了 我觉得图应该是这样画的&#xff0c;相同颜色的区域…

VSCode搭建ARM开发环境

为了构建Cortex M系列单片机免费开源的开发环境&#xff0c;网络上了解来看VSCODEGCCJLINK是一套比较高效的组合方式&#xff0c;下面记录环境搭建的流程。 我这边的PC环境为 WIN7专业版64bit。 需要用到的工具 Visual Studio CodeSTM32CubemxARM GCC 交叉编译工具链&#x…

cadence 之 Allegro PCB封装 3D模型

Allegro PCB封装怎样赋3D模型 1、方式一 —— 设置器件高度 2、方式二 —— 指定STEP模型 2.1、Step 3D模型库 2.2、软件环境的设置和 STEP 模型库路径设置 D:\Cadence\Cadence_SPB_17.4-2019\share\local\pcb\step 2.3、指定STEP模型 即可打开 STEP 模型指定的对话框&…

【理解】STM32一键下载电路

1.MCUISP 串口软件一键下载设置&#xff1a; DTR 低电平复位&#xff0c;RTS 高电平进入boot load 串口下载 在ch340 芯片对应DTR 和RTS 输出电平与电脑软件设置的电平相反。 一键下载电路根据ch340 芯片对应引脚的控制信号完成对应功能 具体实现过程如下&#xff1a; 2.单…

VR数字化线上展馆降低企业投入成本和周期

VR云展会是一种全新的展览形式&#xff0c;它利用虚拟现实技术&#xff0c;将实体展览搬到线上&#xff0c;让观众可以在家中就能参观各种展览。这种新型的展览方式有许多亮点&#xff0c;下面就来详细介绍一下。 首先&#xff0c;VR云展会打破了地域限制。传统的实体展览通常只…

WPF 消息提示 类似toast方式

WPF里面的消息提示一般都是MessageBox.Show()&#xff0c;这种样式不是很好看&#xff0c;所以就想办法重新搞了一个类似弹出消息的功能。原理很简单&#xff0c;就是弹出一个新窗体&#xff0c;然后等几秒窗体自动关闭。 先上效果图&#xff1a; 新建一个MsgHelper.cs类&…

海外互联网专线主要解决企业哪些办公问题?

海外互联网专线 是一种专门为跨境企业提供的网络连接服务&#xff0c;旨在解决企业在海外办公过程中遇到的各种网络问题。海外互联网专线如何成为解决企业办公难题的利器&#xff0c;为企业提供稳定、高速的网络连接? 1、跨国远程办公&#xff1a; 随着全球化进程的加速&…

Android应用界面

概述&#xff1a;由于学校原因&#xff0c;估计会考&#xff0c;曹某人就浅学一下。 目录 View概念 创建和使用布局文件 相对布局 线性布局 水平线性布局 垂直线性布局 表格布局 帧布局 扁平化布局 Android控件详解 AdapterView及其子类 View概念 安卓中的View是所…

Codesys.运动控制电子齿轮

文章目录 一. 电子齿轮概念应用 二. 电子齿轮耦合功能块 2.1. MC_GearIn 2.2. MC_GearInPos 2.3. MC_GearOut 三. 电子齿轮案例 3.1. 样例介绍 3.2. 引入虚轴 3.3. 程序框架 3.4. 程序编写 3.5. 程序监控 一. 电子齿轮概念应用 在很多应用场景中有多个牵引轴每个牵引…

【重温设计模式】备忘录模式及其Java示例

备忘录模式的概述 在软件设计的世界中&#xff0c;备忘录模式是一种行为设计模式&#xff0c;它的主要作用是保存对象的当前状态&#xff0c;以便在将来的某个时间点&#xff0c;可以将对象恢复到这个保存的状态。这种模式的命名源于生活中的备忘录&#xff0c;我们常常用它来…

俄罗斯方块h5源码

上传源码至服务器和空间即可使用&#xff0c;源码无后门&#xff0c;就一天html文件&#xff0c;一个两个css文件以及一个js文件 源码下载&#xff1a;https://download.csdn.net/download/m0_66047725/88897605 更多资源下载&#xff1a;关注我。

148个Chatgpt关键词汇总-有爱AI实战教程(二)

演示站点&#xff1a; https://ai.uaai.cn 技能模块 官方论坛&#xff1a; www.jingyuai.com 京娱AI 导读&#xff1a;在使用 ChatGPT 时&#xff0c;当你给的指令越精确&#xff0c;它的回答会越到位&#xff0c;举例来说&#xff0c;假如你要请它帮忙写文案&#xff0c;如…

devops-Maven【部署及配置】

1、准备maven工具包&#xff0c;Maven官网下载Maven的安装包 Maven – Download Apache Maven Index of /maven (apache.org) 选择后缀是.bin.tar.gz的文件下载&#xff0c;此处下载的版本是3.9.6。 2、安装maven的目录下&#xff0c;建一个Maven路径&#xff0c;然后把压缩…

JAVA虚拟机实战篇之内存调优[5](诊断和解决问题-两种方式总结)

文章目录 版权声明诊断和解决问题 - 两种方案在线定位问题步骤在线定位问题 – btrace 总结内存溢出&内存泄漏内存溢出原因解决内存泄漏方法 版权声明 本博客的内容基于我个人学习黑马程序员课程的学习笔记整理而成。我特此声明&#xff0c;所有版权属于黑马程序员或相关权…

探索数据可视化:Matplotlib 基础指南

图形绘制 import numpy as np import pandas as pd import matplotlib.pyplot as pltx np.linspace(0,2 * np.pi,100)# 说明&#xff1a;正弦波。x&#xff1a;NumPy数组 # 所有的数据&#xff0c;进行正弦计算 y np.sin(x)plt.plot(x,y)# 指定x轴范围 plt.xlim(-1,10) # 指…

746. 使用最小花费爬楼梯 (Swift版本)

题目 给你一个整数数组 cost&#xff0c;其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用&#xff0c;即可选择向上爬一个或者两个台阶。 你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。 请你计算并返回达到楼梯顶部的最低花费。 限制条件 2…

智能合约语言(eDSL)—— proc_macro实现合约init函数

我们通过属性宏来实现合约的init函数&#xff0c;call函数其实和init是类似的&#xff1b; GitHub - XuHugo/xwasm 构建属性宏&#xff0c;要在cargo.toml里面设置一些参数&#xff0c;这是必须的。一般来说&#xff0c;过程宏必须是一个库&#xff0c;或者作为工程的子库&…

thingsboard如何自定义udp-transport

0、参考netty实现udp的文章 https://github.com/narkhedesam/Netty-Simple-UDP-TCP-server-client/blob/master/netty-udp/src/com/sam/netty_udp/server/MessageDecoder.java 调试工具使用的是:卓岚TCP&UDP调试工具 1、在common\transport下面创建udp模块,仿照mqtt的创…

Linux配置.bashrc文件导致各种命令(vim、sudo)失效。

Linux配置.bashrc文件导致各种命令&#xff08;vim、sudo&#xff09;失效。 起因是 nvcc-V一直报错&#xff1a;-bash&#xff1a;nvcc&#xff1a; command not found 踩坑记录&#xff1a;上网一查说是没有配置cuda的环境变量。于是去修改了bashrc文件&#xff0c;在最下面…