什么是Java内存模型

当问到 Java 内存模型的时候,一定要注意,Java 内存模型(Java Memory Model,JMM)它和 JVM 内存布局(JVM 运行时数据区域)是不一样的,它们是两个完全不同的概念。

1.为什么要有 Java 内存模型?

Java 内存模型存在的原因在于解决多线程环境下并发执行时的内存可见性和一致性问题。在现代计算机系统中,尤其是多处理器架构下,每个处理器都有自己的高速缓存,而主内存(RAM)是所有处理器共享的数据存储区域。当多个线程同时访问和修改同一块共享数据时,如果没有适当的同步机制,就可能导致以下问题:

  1. 可见性:一个线程对共享变量所做的修改可能不会立即反映到另一个线程的视角中,因为这些修改可能只存在于本地缓存中,并未刷新回主内存。

  2. 有序性:编译器和处理器为了优化性能,可能会对指令进行重排序,这可能导致程序在单线程环境中看似按照源代码顺序执行,但在多线程环境中的实际执行顺序却与预期不同。

  3. 原子性:即使是最简单的读取或赋值操作,在硬件层面也不一定保证是原子性的,即在没有同步的情况下,多线程下可能看到操作只执行了一部分的结果。

Java 内存模型通过定义一套规则来规范并限制编译器、运行时以及处理器对内存访问的重排序行为,确保了多线程间的交互具有明确的语义。它规定了共享变量的访问规则、提供了 happens-before 原则以及 volatile 关键字、synchronized 等工具来实现内存可见性和一致性的保障。这样,程序员在编写并发代码时,可以依据这些规则来确保代码的正确执行,从而避免由于多线程带来的不确定性和错误。

如果没有 Java 内存模型就会出现以下两大问题:

  1. CPU 和 内存一致性问题。

  2. 指令重排序问题。

具体内容如下。

1.1 一致性问题

要讲明白缓存一致性问题,要从计算机的内存结构说起,它的结构是这样的:

所以从上面可以看出计算机的重要组成部分包含以下内容:

  1. CPU

  2. CPU 寄存器:也叫 L1 缓存,一级缓存。

  3. CPU 高速缓存:也叫 L2 缓存,二级缓存。

  4. (主)内存

当然,部分高端机器还有 L3 三级缓存。

由于主内存与 CPU 处理器的运算能力之间有数量级的差距,所以在传统计算机内存架构中会引入高速缓存(L2)来作为主存和处理器之间的缓冲,CPU 将常用的数据放在高速缓存中,运算结束后 CPU 再讲运算结果同步到主内存中,这样就会导致多个线程在进行操作和同步时,导致 CPU 缓存和主内存数据不一致的问题。

1.2 重排序问题

由于有 JIT(Just In Time,即时编译)技术的存在,它可能会对代码进行优化,比如将原本执行顺序为 a -> b -> c 的流程,“优化”成 a -> c -> b 了,但这样优化之后,可能会导致我们的程序在某些场景执行出错,比如单例模式双重效验锁的场景,这就是典型的好心办坏事的事例。

2.定义

Java 内存模型(Java Memory Model,简称 JMM)是一种规范,它定义了 Java 虚拟机(JVM)在计算机内存(RAM)中的工作方式,即规范了 Java 虚拟机与计算机内存之间是如何协同工作的。具体来说,它规定了一个线程如何和何时可以看到其他线程修改过的共享变量的值,以及在必须时如何同步地访问共享变量。

3.规范内容

Java 内存模型主要包括以下内容:

  1. 主内存(Main Memory):所有线程共享的内存区域,包含了对象的字段、方法和运行时常量池等数据。

  2. 工作内存(Working Memory):每个线程拥有自己的工作内存,用于存储主内存中的数据的副本,线程只能直接操作工作内存中的数据。

  3. 内存间交互操作:线程通过读取和写入操作与主内存进行交互。读操作将数据从主内存复制到工作内存,写操作将修改后的数据刷新到主内存。

  4. 原子性(Atomicity):JMM 保证基本数据类型(如 int、long)的读写操作具有原子性,即不会被其他线程干扰,保证操作的完整性。

  5. 可见性(Visibility):JMM 确保一个线程对共享变量的修改对其他线程可见。这意味着一个线程在工作内存中修改了数据后,必须将最新的数据刷新到主内存,以便其他线程可以读取到更新后的数据。

  6. 有序性(Ordering):JMM 保证程序的执行顺序按照一定的规则进行,不会出现随机的重排序现象。这包括了编译器重排序、处理器重排序和内存重排序等。

Java 内存模型通过以上规则和语义,提供了一种统一的内存访问方式,使得多线程程序的行为可预测、可理解,并帮助开发者编写正确和高效的多线程代码。开发者可以利用 JMM 提供的同步机制(如关键字 volatile、synchronized、Lock 等)来实现线程之间的同步和通信,以确保线程安全和数据一致性。

内存模型的简单执行示例图如下:

3.1 主内存和工作内存交互规范

为了更好的控制主内存和本地内存的交互,Java 内存模型定义了八种操作来实现(以下内容只需要简单了解即可):

  1. lock(锁定):作用于主内存的变量,把一个变量标识为一条线程独占状态。

  2. unlock(解锁):作用于主内存变量,把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定。

  3. read(读取):作用于主内存变量,把一个变量值从主内存传输到线程的工作内存中,以便随后的 load 动作使用

  4. load(载入):作用于工作内存的变量,它把 read 操作从主内存中得到的变量值放入工作内存的变量副本中。

  5. use(使用):作用于工作内存的变量,把工作内存中的一个变量值传递给执行引擎,每当虚拟机遇到一个需要使用变量的值的字节码指令时将会执行这个操作。

  6. assign(赋值):作用于工作内存的变量,它把一个从执行引擎接收到的值赋值给工作内存的变量,每当虚拟机遇到一个给变量赋值的字节码指令时执行这个操作。

  7. store(存储):作用于工作内存的变量,把工作内存中的一个变量的值传送到主内存中,以便随后的write的操作。

  8. write(写入):作用于主内存的变量,它把 store 操作从工作内存中一个变量的值传送到主内存的变量中。

PS:工作内存也就是本地内存的意思。

3.2 什么是 happens-before 原则?

happens-before(先行发生)原则是 Java 内存模型中定义的用于保证多线程环境下操作执行顺序和可见性的一种重要手段。

举个例子来说,例如 A happens-before B,也就是 A 线程早于 B 线程执行,那么 A happens-before B 可以保障以下两项内容:

  • 可见性:B 读取到 A 最新修改的值(通过内存屏障)。

  • 顺序性:编译器优化、处理器重排序等因素不会影响先执行 A 再执行 B 的顺序。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/730964.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【校园安全】支小蜜防校园霸凌语音识别系统的好处

在校园安全领域,防校园霸凌语音识别系统的出现,为预防和应对校园霸凌行为提供了新的技术手段。本文将探讨防校园霸凌语音识别系统的好处,并分析其在校园安全建设中的重要作用。 通过安装在校园各个角落的语音识别设备,系统能够捕…

蓝桥杯倒计时 36天-DFS练习2

文章目录 黄金二叉树混沌之力2 黄金二叉树 思路一&#xff1a;递推做法 #include<bits/stdc.h> using namespace std;const int N 1e510;int A[N]; int B[N]; int n,sum;int main( ){cin>>n;for(int i1;i<n;i)cin>>A[i];int left,right;for(int i1;i<…

用Python爬取古诗文网的各类古诗

fetch-gushiwen 用途 可以拿去用于个人知识库、知识图谱的创建等其他学习用途。 使用 输入古诗文网的链接&#xff0c;即可爬取该页面所有诗歌的诗名&#xff0c;作者&#xff0c;朝代&#xff0c;内容&#xff0c;译文&#xff0c;注释&#xff0c;赏析&#xff0c;创作背…

[MRCTF2020]Transform1

a[33]"9,10,15,23,7,24,12,6,1,16,3,17,32,29,11,30,27,22,4,13,19,20,21,2,25,5,31,8,18,26,28,14" b[33]"103,121,123,127,117,43,60,82,83,121,87,94,93,66,123,45,42,102,66,126,76,87,121,65,107,126,101,60,92,69,111,98,77" python代码 a3 [103…

前端实现一个绕圆心转动的功能

得知了转换关系&#xff0c;我们就可以定义一个变量 angle 来表示我们这个 div 做圆周运动时绕圆心转过的角度&#xff0c;则弧度&#xff08;radian&#xff09; 为 radian &#xff08;angle*π&#xff09;/180 我们先在草稿纸上演练一遍我们的逻辑是否可行。让我们先准备一…

2024蓝桥杯每日一题(差分)

一、第一题&#xff1a;空调 解题思路&#xff1a;差分 希望P减掉T后就相当于从0到New_P&#xff0c;想到得到New_P只需要对全0数组进行若干次区间加操作&#xff0c;所以只需要对New_P数组进行差分&#xff0c;累加正数和负数&#xff0c;哪个绝对值大答案就是那个。 …

数据库安全的重要性

数据库作为信息系统的核心&#xff0c;不仅承载着海量的关键数据&#xff0c;还负责向各类用户提供高效、可靠的信息服务。在网络技术高度发展的今天&#xff0c;数据库的安全性显得尤为关键。为了防范不法分子的攻击&#xff0c;维护数据完整性和可靠性&#xff0c;数据库安全…

【Windows】VMware虚拟机应用(二):安装ubuntu-14.04.4

一、下载安装包 ubuntu-14.04.4-server-amd64.iso 注&#xff1a;因为我是用已有的安装包&#xff0c;所以&#xff0c;这里就不写下载步骤了。 二、安装引导 以管理员身份运行 VMware Workstation Pro 注&#xff1a;如果不是管理员身份运行&#xff0c;在安装系统时会出现…

二叉搜索树:查找+插入+删除+性能分析

文章目录 一、搜索树1.二叉搜索树的查找2.二叉搜索树的插入3.二叉搜索树的删除4.性能分析 一、搜索树 二叉搜素树 &#xff08; 二叉排序树 ) 1.要么是空树 2.如果左子树不为空&#xff0c;则左子树上所有节点的值都小于根节点的值 3.如果右子树不为空&#xff0c;则右子树上所…

7款前端实战型项目特效分享(附在线预览)

分享7款实用性的前端动画特效 其中有canvas特效、css动画、svg动画等等 下方效果图可能不是特别的生动 那么你可以点击在线预览进行查看相应的动画特效 同时也是可以下载该资源的 CSS春节灯笼特效 基于CSS实现的灯笼特效 灯笼会朝左右两个方向来回的摆动着 以下效果图只能体现…

关于Vue3的一些操作

1. 设置浏览器自动打开 在package.json 中设置 dev: vite --open 2.给src文件夹配置别名 在vite.config.ts配置文件中添加以下内容 3. 如果2中有红色波浪线的问题 ***安装一个文件包***npm install types/node3. 在tsconfig.json配置文件中&#xff0c;找到配置项compi…

Windows下Node.js安装保姆级教程

一、Node.js 下载 访问Node.js官网&#xff0c;点击下载Node.js 下载完成后即可在下载文件中查看安装包 二、安装 一&#xff09;点击安装包开始安装&#xff0c;进入Weclcome界面点击Next 二&#xff09;勾选同意协议&#xff0c;点击Next 三&#xff09;根据需要选择安装路…

Open CASCADE学习|表面着色显示模型

模型表面着色具有如下作用&#xff1a; 视觉增强&#xff1a;通过为模型表面添加着色&#xff0c;可以使其更加生动和逼真&#xff0c;提高视觉体验。 信息区分&#xff1a;在复杂的模型中&#xff0c;不同的部分或组件可能需要通过不同的颜色来区分&#xff0c;以便更清晰地…

简介maven核心:pom项目对象模型

Maven Maven 意思是知识的积累者&#xff0c;最初是为了简化 Jakarta Turbine 项目中的构建过程。有几个项目&#xff0c;每个项目都有自己的 Ant 构建文件&#xff0c;它们都略有不同。JAR 被检入 CVS。我们想要一种标准的方式来构建项目&#xff0c;清楚地定义项目的组成&am…

Redis缓存预热-缓存穿透-缓存雪崩-缓存击穿

什么叫缓存穿透? 模拟一个场景: 前端用户发送请求获取数据,后端首先会在缓存Redis中查询,如果能查到数据,则直接返回.如果缓存中查不到数据,则要去数据库查询,如果数据库有,将数据保存到Redis缓存中并且返回用户数据.如果数据库没有则返回null; 这个缓存穿透的问题就是这个…

电力物联网系统设计

电力物联网系统设计 简介 在新能源行业从业多年&#xff0c;参与和负责过大大小小的的项目&#xff0c;发电侧、电网侧、用户侧系统都有过实际的项目经验&#xff0c;这些项目或多或少都有物联网采集方面的需求&#xff0c;本篇文章将会对电力行业物联网经验做一个总结分享。 …

【Spring知识体系】1.1 Java 注解(Annotation)

文章目录 1.1 注解&#xff08;Annotation&#xff09;1.1.1 什么是注解1.1.2 内置注解1.1.3 元注解&#xff08;5种&#xff09;1.14 自定义注解1.15 注解使用场景介绍※ 本文小结 1.1 注解&#xff08;Annotation&#xff09; 1.1.1 什么是注解 注解的定义&#xff1a;它提…

基于工业边缘网关的机械状态监测与故障诊断应用

机械设备工作于各种各样的环境&#xff0c;在运行过程中必然受到力、温度、摩擦等多种物理、化学作用,使机械设备状态和性能变化,进而产生“隐性故障”。随着机械设备“隐性故障”的长期累积&#xff0c;可能造成设备损伤损坏&#xff0c;甚至影响系统整体生产和运营&#xff0…

从零开始学习Diffusion Models: Sharon Zhou

How Diffusion Models Work 本文是 https://www.deeplearning.ai/short-courses/how-diffusion-models-work/ 这门课程的学习笔记。 文章目录 How Diffusion Models WorkWhat you’ll learn in this course [1] Intuition[2] SamplingSetting Things UpSamplingDemonstrate i…

帮管客 CRM jiliyu SQL注入漏洞复现

0x01 产品简介 帮管客CRM是一款集客户档案、销售记录、业务往来等功能于一体的客户管理系统。帮管客CRM客户管理系统,客户管理,从未如此简单,一个平台满足企业全方位的销售跟进、智能化服务管理、高效的沟通协同、图表化数据分析帮管客颠覆传统,重新定义企业管理系统。 …