基于YOLOv5的驾驶员疲劳驾驶行为​​​​​​​检测系统

 💡💡💡本文主要内容:详细介绍了疲劳驾驶行为检测整个过程,从数据集到训练模型到结果可视化分析。

                                                             博主简介

AI小怪兽,YOLO骨灰级玩家,1)YOLOv5、v7、v8优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富;

原创自研系列, 2024年计算机视觉顶会创新点

《YOLOv8原创自研》

《YOLOv5原创自研》

《YOLOv7原创自研》

23年最火系列,内涵80+优化改进篇,涨点小能手,助力科研,好评率极高

《YOLOv8魔术师》

 《YOLOv7魔术师》

《YOLOv5/YOLOv7魔术师》

《RT-DETR魔术师》

应用系列篇:

《YOLO小目标检测》

《深度学习工业缺陷检测》

《YOLOv8-Pose关键点检测》

1.疲劳驾驶行为

每一年,中国都因交通事故而造成数万人的死亡,造成了严重的损失。而其中司机疲劳驾驶,是导致事故发生的重要原因之一。但是当司机们陷入疲劳驾驶状态时,往往司机本人对此状态并不在意,甚至会陷入睡眠状态!整治疲劳驾驶行为成为了交通运输行业的首要任务。随着信息技术的日新月异,如今,我们有机会使用信息技术,消除疲劳驾驶的隐患。实现了通过驾驶员的眼部、嘴部动作实时推断疲劳状态,使得驾驶员能及时的被本地语音方式提醒,避免疲劳驾驶,同时后台管理人员能接收到司机疲劳报警信息。

1.1数据集介绍

数据集大小2914张,类别['closed_eye','closed_mouth','open_eye','open_mouth']

2.基于YOLOv5的疲劳驾驶行为检测

2.1 修改fatigue.yaml

# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
# Download command: bash ./data/get_voc.sh
# Train command: python train.py --data voc.yaml
# Dataset should be placed next to yolov5 folder:
#   /parent_folder
#     /VOC
#     /yolov5# train and val datasets (image directory or *.txt file with image paths)
train: ./data/fatigue/train.txt # 16551 images
val: ./data/fatigue/val.txt  # 4952 images# number of classes
nc: 4# class names
names: ['closed_eye','closed_mouth','open_eye','open_mouth']

2.2 修改train.py 

def parse_opt(known=False):"""Parses command-line arguments for YOLOv5 training, validation, and testing."""parser = argparse.ArgumentParser()parser.add_argument("--weights", type=str, default=ROOT / "weights/yolov5s.pt", help="initial weights path")parser.add_argument("--cfg", type=str, default="models/yolov5s.yaml", help="model.yaml path")parser.add_argument("--data", type=str, default=ROOT / "data/fatigue.yaml", help="dataset.yaml path")parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path")parser.add_argument("--epochs", type=int, default=50, help="total training epochs")parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch")parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)")parser.add_argument("--rect", action="store_true", help="rectangular training")parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training")parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")parser.add_argument("--noval", action="store_true", help="only validate final epoch")parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor")parser.add_argument("--noplots", action="store_true", help="save no plot files")parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations")parser.add_argument("--evolve_population", type=str, default=ROOT / "data/hyps", help="location for loading population")

 2.3 结果可视化分析 

YOLOv5s summary: 157 layers, 7020913 parameters, 0 gradients, 15.8 GFLOPsClass     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 25/25 [00:10<00:00,  2.38it/s]all        787       2109       0.97      0.982       0.99      0.611closed_eye        787        566      0.953      0.979      0.988       0.54closed_mouth        787        701      0.986      0.997      0.989      0.622open_eye        787        774      0.955      0.967      0.988      0.545open_mouth        787         68      0.985      0.985      0.995      0.736

confusion_matrix.png文件是一个混淆矩阵的可视化图像,用于展示模型在不同类别上的分类效果。混淆矩阵是一个n×n的矩阵,其中n为分类数目,矩阵的每一行代表一个真实类别,每一列代表一个预测类别,矩阵中的每一个元素表示真实类别为行对应的类别,而预测类别为列对应的类别的样本数。

PR_curve.png

PR曲线中的P代表的是precision(精准率),R代表的是recall(召回率),其代表的是精准率与召回率的关系,一般情况下,将recall设置为横坐标,precision设置为纵坐标。PR曲线下围成的面积即AP,所有类别AP平均值即Map

 预测结果: 

关注下方名片,即可获取源码。  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/728090.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring事务注解@Transactional的流程和源码分析

Spring事务简介 Spring事务有两种方式&#xff1a; 编程式事务&#xff1a;编程式事务通常使用编程式事务管理API实现&#xff0c;比如Spring提供的PlatformTransactionManager接口&#xff0c;使用它操控事务。声明式事务&#xff1a;注解式事务使用AOP&#xff08;面向切面…

通过Dockerfile创建镜像

通过Dockerfile创建镜像 Docker 提供了一种更便捷的方式&#xff0c;叫作 Dockerfile docker build命令用于根据给定的Dockerfile构建Docker镜像。 docker build语法&#xff1a; # docker build [OPTIONS] <PATH | URL | -> 1. 常用选项说明--build-arg&#xff0c;设置…

Java学习笔记------内部类

类的五大成员 属性、方法、构造方法、代码块、内部类 内部类 格式&#xff1a; public class Outer{//外部类 public class Inner{//内部类 } } public class Test{//外部其他类 public static void main(String[] args) } inner类表示的事物是Outer类的一部分&#xf…

【计算机考研】考408,还是不考408性价比高?

首先综合考虑&#xff0c;如果其他科目并不是很优秀&#xff0c;需要我们花一定的时间去复习&#xff0c;408的性价比就不高&#xff0c;各个科目的时间互相挤压&#xff0c;如果备考时间不充裕&#xff0c;考虑其他专业课也未尝不可。 复习408本来就是费力不讨好的事情 不同…

公司项目总结合分享经验

珠海督办 1.批量导入 导入excel表单给接口&#xff0c;接口返回前端想要的数据 list是代表数据的数量&#xff0c;titleMap是代表数据中会有那些字段 listl里面的字段&#xff1a; value是代表要显示的值&#xff0c;success为true代表excel表格的内容填写是正确的&#…

前端布局方式及其优缺点

前端布局方式多种多样&#xff0c;每种布局方式都有其特定的应用场景、特性和优缺点。以下是一些常见的前端布局方式及其特点和优缺点&#xff1a; 静态布局&#xff1a; 特性&#xff1a;元素的尺寸使用绝对单位&#xff08;如px&#xff09;进行定义&#xff0c;不会随浏览器…

1.5 简述转置卷积的主要思想以及应用场景

1.5 简述转置卷积的主要思想以及应用场景 普通的卷积主要思想&#xff1a; 普通的卷积操作可以形式化为一个矩阵乘法运算&#xff0c;即yAx&#xff08;1-12&#xff09; 其中&#xff0c;x和y分别是卷积的输入和输出(展平成一维向量形式)&#xff0c;维度分别为d⁽i⁾和d⁽…

Linux:kubernetes(k8s)探针ReadinessProbe的使用(9)

本章yaml文件是根据之前文章迭代修改过来的 先将之前的pod删除&#xff0c;然后使用下面这个yaml进行生成pod apiVersion: v1 # api文档版本 kind: Pod # 资源对象类型 metadata: # pod相关的元数据&#xff0c;用于描述pod的数据name: nginx-po # pod名称labels: # pod的标…

第三百八十八回

文章目录 概念介绍使用方法示例代码 我们在上一章回中介绍了DateRangePickerDialog Widget相关的内容,本章回中将介绍Radio Widget.闲话休提&#xff0c;让我们一起Talk Flutter吧。 概念介绍 我们在这里说的Radio Widget是指单选按钮&#xff0c;没有选中时是圆形边框&#x…

Vue+SpringBoot打造超市账单管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统设计3.1 总体设计3.2 前端设计3.3 后端设计在这里插入图片描述 四、系统展示五、核心代码5.1 查询供应商5.2 查询商品5.3 新增超市账单5.4 编辑超市账单5.5 查询超市账单 六、免责说明 一、摘要 1.1 项目介绍 基于…

王道机试C++第 3 章 排序与查找:排序问题 Day28(含二分查找)

查找 查找是另一类必须掌握的基础算法&#xff0c;它不仅会在机试中直接考查&#xff0c;而且是其他某些算法的基础。之所以将查找和排序放在一起讲&#xff0c;是因为二者有较强的联系。排序的重要意义之一便是帮助人们更加方便地进行查找。如果不对数据进行排序&#xff0c;…

【uni-app小程序开发】实现一个背景色渐变的滑动条slider

最近做的一个用uni-app+vue2开发的微信小程序项目中要实现一个滑动进度控制条,如下图所示: 1. 滑动条需要渐变背景色 2. 滑块的背景色需要与当前位置滑动条的背景色一致(动态改变) 碰到这样的需求,我当然先是看看官方提供的slider组件和uView里的u-slider组件能不能满足…

Javaweb之Web后端开发总结的详细解析

4. Web后端开发总结 到此基于SpringBoot进行web后端开发的相关知识我们已经学习完毕了。下面我们一起针对这段web课程做一个总结。 我们来回顾一下关于web后端开发&#xff0c;我们都学习了哪些内容&#xff0c;以及每一块知识&#xff0c;具体是属于哪个框架的。 web后端开…

nyist_acm 个人积分赛1(部分题解会补充)

Mirrored String II 看到题解说是马拉车算法&#xff0c;我赛时并没想到&#xff08;好吧其实我是比赛完才知道有马拉车这个算法&#xff09; 因为字符串的长度只有1000&#xff0c;直接暴力跑其实就可以了&#xff0c;但是要注意的是&#xff1b;回文串有俩种形式&#xff0c…

1. Gin框架入门

文章目录 一、Gin框架介绍二、RESTful API三、Gin渲染1. HTML渲染2. 自定义模板函数3. 静态文件处理4. 使用模板继承5. 补充文件路径处理6. JSON渲染7. XML渲染8. YMAL渲染9. protobuf渲染 四、Gin获取各种方式传递过来的参数1、获取querystring参数2、获取form参数3、获取path…

Vue3实现页面跳转功能

目标&#xff1a; 首页&#xff1a; 点击About后&#xff1a; 第一步&#xff1a;安装 Vue Router和创建你先 npm install vue-router4第二步&#xff1a;在router.js中设置路由 import { createRouter, createWebHistory } from vue-router; import Home from ./views/Home…

如何写一份简单的产品说明书,教程奉上

如果你是一位新晋产品经理&#xff0c;或者正在研发新产品&#xff0c;并且心中惴惴不安因为未知的产品说明书制作环节&#xff0c;那么今天你就来对地方了。本篇文章将教你如何创建一份简单明了的产品说明书。让我们开始吧&#xff01; 首先&#xff0c;明确产品说明书的目标。…

达梦数据库基础操作(二):表空间操作

达梦数据库基础操作(二)&#xff1a;表空间操作 1. 表空间操作 1.1 达梦表空间介绍 表空间的概念&#xff1a; 每个DM 数据库都是由一个或者多个表空间组成&#xff0c;表空间是一个逻辑的存储容器&#xff0c;它位于逻辑结构的顶层&#xff0c;用于存储数据库中的所有数据&am…

【CSP试题回顾】201503-3-节日

CSP-201503-3-节日 关键点&#xff1a;格式化输出 在C中&#xff0c;格式化输出通常利用iostream库中的功能&#xff0c;特别是iomanip头文件提供的一系列操作符。这些操作符用于控制输出格式&#xff0c;如宽度、填充、对齐方式等。在你提供的代码中&#xff0c;用于格式化输…

基于Springboot+Layui餐厅点餐系统

一、项目背景 在互联网经济飞速发展的时代&#xff0c;网络化企业管理也在其带领下快速兴起&#xff0c;开发一款自主点餐系统会受到众多商家的青睐。现如今市场上的人力资源价格是非常高昂的&#xff0c;一款自主点餐系统可以减少餐厅的人力开销&#xff0c;将服务员从繁忙的…