【DPDK】基于dpdk实现用户态UDP网络协议栈

文章目录

  • 一.背景及导言
  • 二.协议栈架构设计
    • 1. 数据包接收和发送引擎
    • 2. 协议解析
    • 3. 数据包处理逻辑
  • 三.网络函数编写
    • 1.socket
    • 2.bind
    • 3.recvfrom
    • 4.sendto
    • 5.close
  • 四.总结

一.背景及导言

在当今数字化的世界中,网络通信的高性能和低延迟对于许多应用至关重要。而用户态网络协议栈通过摆脱传统内核态协议栈的限制,为实现更快速、灵活的数据包处理提供了新的可能性。本文将深入探讨基于DPDK的用户态UDP网络协议栈的设计、实现。

传统的内核态协议栈在处理网络通信时通常伴随着较大的性能开销,而用户态网络协议栈的崛起为高性能应用带来了全新的解决方案。DPDK,作为一款用于高性能数据平面应用的工具包,为用户态网络协议栈的实现提供了强大的支持。通过将网络协议栈移植到用户态,我们可以更灵活地优化数据包处理、提高吞吐量,并有效降低处理延迟。

二.协议栈架构设计

网络协议栈整体大致架构如下图所示:
在这里插入图片描述

1. 数据包接收和发送引擎

数据包接收和发送引擎负责从网络接口接收数据包,并将数据包发送到目标地址。通过DPDK提供的高性能数据包I/O接口,实现对多队列的支持,以提高并行性和吞吐量。

从网卡接收原始数据放入in_ring:
rte_eth_rx_burst();
out_ring中取出数据通过网卡发送:
rte_eth_tx_burst();

while(1) {// rxstruct rte_mbuf *rx[BURST_SIZE];// 内存池//接收unsigned num_recvd = rte_eth_rx_burst(gDpdkPortId, 0, rx, BURST_SIZE);if(num_recvd > BURST_SIZE) {rte_exit(EXIT_FAILURE, "Error receiving from eth\n");} else if(num_recvd > 0) {//入队列rte_ring_sp_enqueue_burst(ring->in, (void**)rx, num_recvd, NULL);}// txstruct rte_mbuf *tx[BURST_SIZE];//出队列unsigned nb_tx = rte_ring_sc_dequeue_burst(ring->out, (void**)tx, BURST_SIZE,NULL);if(nb_tx > 0) {//发送rte_eth_tx_burst(gDpdkPortId, 0, tx, nb_tx);unsigned i = 0;for(;i < nb_tx; i++) {rte_pktmbuf_free(tx[i]);}}static uint64_t prev_tsc = 0, cur_tsc;uint64_t diff_tsc;cur_tsc = rte_rdtsc();diff_tsc = cur_tsc - prev_tsc;if(diff_tsc > TIMER_RESOLUTION_CYCLES) {rte_timer_manage();prev_tsc = cur_tsc;}}

2. 协议解析

协议解析模块负责对接收到的UDP数据包进行解析,提取出源和目标端口号、校验和等关键信息。采用高效的解析算法,确保对数据包的处理不成为性能瓶颈。
从原始数据包中解析以太网头:

struct rte_ether_hdr *ehdr = rte_pktmbuf_mtod(mbufs[i],struct rte_ether_hdr*);

从原始数据包中(偏移以太网头)解析arp头:

struct rte_arp_hdr *ahdr = rte_pktmbuf_mtod_offset(mbufs[i],struct rte_arp_hdr *,sizeof(struct rte_ether_hdr));

从原始数据包中解析IP头:

struct rte_ipv4_hdr *iphdr = rte_pktmbuf_mtod_offset(mbufs[i], struct rte_ipv4_hdr *, sizeof(struct rte_ether_hdr));

通过IP头中的网络类型协议可以得知该数据包是UDP,TCP或ICMP包,通过类型强制转换可以得到相对应的数据包协议头。
通过IP头偏移1位强转可得到UDP/TCP头:

struct rte_udp_hdr *udphdr = (struct rte_udp_hdr *)(iphdr + 1);

通过IP头偏移1位强转可得到ICMP头:

struct rte_icmp_hdr *icmphdr = (struct rte_icmp_hdr *)(iphdr + 1);

不同的数据包调用不同的函数处理,通过对数据包的解析可以得到我们想要的IP地址,端口号,以太网地址,数据等。

3. 数据包处理逻辑

数据包处理逻辑包括各种应用层的逻辑,如数据包过滤、路由决策等。这一部分需要具体根据应用场景进行定制,以满足不同需求。
当用户接收并处理完数据包后得到新的用户数据需要发送,此时我们只需要逆向操作接收数据包的过程即可。
一个UDP数据帧组成结构如图所示,在用户数据上添加UDP头,在此基础上再添加IP头,最后再添加以太网头,一个UDP数据帧就组装完毕,就可直接通过网卡发送。
在这里插入图片描述
按UDP数据帧结构从用户数据从上往下依次组包。
在这里插入图片描述
!](https://img-blog.csdnimg.cn/direct/ede89757233f4dca8eff2eec63826075.png)

//1 etherstruct rte_ether_hdr *eth = (struct rte_ether_hdr*)msg;rte_memcpy(eth->s_addr.addr_bytes, src_mac, RTE_ETHER_ADDR_LEN);//源Mac地址rte_memcpy(eth->d_addr.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);//目的Mac地址eth->ether_type = htons(RTE_ETHER_TYPE_IPV4);//类型

在这里插入图片描述

//2 iphdrstruct rte_ipv4_hdr *ip = (struct rte_ipv4_hdr*)(msg + sizeof(struct rte_ether_hdr));ip->version_ihl = 0x45; //4位版本,4位首部长度ip->type_of_service = 0;//服务类型ip->total_length = htons(length - sizeof(struct rte_ether_hdr));//总长度ip->packet_id = 0;//16位标识ip->fragment_offset = 0;//偏移ip->time_to_live = 64; //TTLip->next_proto_id = IPPROTO_UDP;//8位协议ip->src_addr = sip;ip->dst_addr = dip;ip->hdr_checksum = 0;ip->hdr_checksum = rte_ipv4_cksum(ip);//首部校验和

UDP协议

//3 udpstruct rte_udp_hdr *udp = (struct rte_udp_hdr*)(msg + sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr));udp->src_port = sport;//源端口udp->dst_port = dport;//目的端口uint16_t udplen = length - sizeof(struct rte_ether_hdr) - sizeof(struct rte_ipv4_hdr);udp->dgram_len = htons(udplen);//长度rte_memcpy((uint8_t*)(udp + 1), data, udplen);udp->dgram_cksum = 0;udp->dgram_cksum = rte_ipv4_udptcp_cksum(ip, udp);//校验和

所有数据包都有以太网头,IP头arp头为第二层,TCP UDP ICMP为第三次,数据组包的时候只需根据需求选择不同的协议填空即可。

三.网络函数编写

定义主机,包括:唯一标识符,IP地址,Mac地址,协议,recvbuf,senfbuf,互斥锁,条件变量,链表结构。

struct localhost {int fd;uint32_t localip;uint8_t localmac[RTE_ETHER_ADDR_LEN];uint16_t localport;uint8_t protocol;struct rte_ring *recvbuf;struct rte_ring *sendbuf;struct localhost *prev;struct localhost *next;pthread_cond_t cond;pthread_mutex_t mutex;
};static struct localhost *lhost = NULL;

使用Hook自定义网络编程函数,或自定义网络函数名。

1.socket

static int 
socket(__attribute__((unused))int domain, int type, __attribute__((unused))int protocol) {int fd = get_fd_frombitmap();struct localhost *host = rte_malloc("localhost", sizeof(struct localhost), 0);if(host == NULL) {return -1;}memset(host, 0, sizeof(struct localhost));host->fd = fd;if(type == SOCK_DGRAM) {host->protocol = IPPROTO_UDP;} host->recvbuf =  rte_ring_create("recv buf",RING_SIZE,rte_socket_id(),RING_F_SP_ENQ | RING_F_SC_DEQ);if(host->recvbuf == NULL) {rte_free(host);return -1;}host->sendbuf =  rte_ring_create("send buf",RING_SIZE,rte_socket_id(),RING_F_SP_ENQ | RING_F_SC_DEQ);if(host->sendbuf == NULL) {rte_ring_free(host->recvbuf);rte_free(host);return -1;}pthread_cond_t blank_cond = PTHREAD_COND_INITIALIZER;rte_memcpy(&host->cond, &blank_cond, sizeof(pthread_cond_t));pthread_mutex_t blank_mutex = PTHREAD_MUTEX_INITIALIZER;rte_memcpy(&host->mutex, &blank_mutex, sizeof(pthread_mutex_t));LL_ADD(host, lhost);return fd;
}

2.bind

static int bind(int sockfd, const struct sockaddr *addr,__attribute__((unused))socklen_t addrlen) {struct localhost *host = get_hostinfo_fromfd(sockfd);if(host == NULL) {return -1;}const struct sockaddr_in *laddr = (const struct sockaddr_in*)addr;host->localport = laddr->sin_port;rte_memcpy(&host->localip, &laddr->sin_addr.s_addr, sizeof(uint32_t));rte_memcpy(host->localmac, gSrcMac, RTE_ETHER_ADDR_LEN);return 0;
}

3.recvfrom

static ssize_t recvfrom(int sockfd, void *buf, size_t len, __attribute__((unused))int flags,struct sockaddr *src_addr, __attribute__((unused))socklen_t *addrlen){struct localhost *host = get_hostinfo_fromfd(sockfd);if(host == NULL) return -1;struct sockaddr_in *saddr = (struct sockaddr_in*)src_addr;//dequeuestruct offload *ol = NULL;unsigned char *ptr = NULL;int nb = -1;//阻塞pthread_mutex_lock(&host->mutex);while((nb = rte_ring_mc_dequeue(host->recvbuf,(void**)&ol)) < 0) {pthread_cond_wait(&host->cond, &host->mutex);}pthread_mutex_unlock(&host->mutex);saddr->sin_port = ol->sport;rte_memcpy(&saddr->sin_addr.s_addr, &ol->sip, sizeof(uint32_t));struct in_addr addr;addr.s_addr = ol->dip;printf("nrecvto ---> src: %s:%d \n", inet_ntoa(addr), ntohs(ol->dport));if(len < ol->length) { //一次无法接收全部数据rte_memcpy(buf, ol->data, len);ptr = rte_malloc("unsigned char *", ol->length - len, 0);rte_memcpy(ptr, ol->data + len, ol->length - len);ol->length -= len;rte_free(ol->data);ol->data = ptr;rte_ring_mp_enqueue(host->recvbuf, ol);return len;} else {rte_memcpy(buf, ol->data, ol->length);rte_free(ol->data);rte_free(ol);return ol->length;}
}

4.sendto

static ssize_t sendto(int sockfd, const void *buf, size_t len, __attribute__((unused))int flags,const struct sockaddr *dest_addr, __attribute__((unused))socklen_t addrlen){struct localhost *host = get_hostinfo_fromfd(sockfd);if(host == NULL) return -1;const struct sockaddr_in *daddr = (const struct sockaddr_in*)dest_addr;struct offload *ol = rte_malloc("offload", sizeof(struct offload), 0);if(ol == NULL) {return -1;}ol->dip = daddr->sin_addr.s_addr;ol->dport = daddr->sin_port;ol->sip = host->localip;ol->sport = host->localport;ol->length = len;struct in_addr addr;addr.s_addr = ol->dip;printf("nsendto ---> src: %s:%d \n", inet_ntoa(addr), ntohs(ol->dport));ol->data = rte_malloc("ol data", len, 0);if(ol->data == NULL) {rte_free(ol);return -1;}rte_memcpy(ol->data, buf, len);rte_ring_mp_enqueue(host->sendbuf, ol);return len;   
}

5.close

static int nclose(int fd) {struct localhost *host = get_hostinfo_fromfd(fd);if(host == NULL) {return -1;}LL_REMOVE(host, lhost);if(host->recvbuf){rte_ring_free(host->recvbuf);}if(host->sendbuf){rte_ring_free(host->sendbuf);}rte_free(host);return 0;
}

四.总结

通过本文,我们深入研究了基于DPDK的用户态UDP网络协议栈的设计、实现。在整体设计思路上,我们采用了用户态网络协议栈的理念,通过将核心功能移至用户空间,结合DPDK的强大支持,实现了一个高性能、低延迟的数据包处理方案。

关键组成部分中,我们详细介绍了数据包接收和发送引擎、协议解析、数据包处理逻辑等模块。这些组成部分共同协作,使得用户态UDP网络协议栈能够在不同应用场景下发挥其优势。

整体架构图清晰展示了各个模块之间的关系,以及数据在协议栈中的流动路径。这有助于读者更好地理解我们设计的用户态UDP网络协议栈的整体结构。

通过对用户态UDP网络协议栈的研究,我们不仅深刻理解了其设计和实现,也为构建更高性能、更灵活的网络通信系统奠定了基础。未来,我们期待在这一基础上进一步优化和扩展,以满足不断发展的网络应用需求。

链接: 基于DPDK实现的UDP用户态网络协议栈完整代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/724661.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【python基础学习10课_面向对象、封装、继承、多态】

一、类与对象 1、类的定义 在类的里面&#xff0c;称之为方法。 在类的外面&#xff0c;称之为函数。类&#xff1a;人类&#xff0c;一个族群&#xff0c;是一个群体类的语法规则&#xff1a;class 自定义的类名():属性 -- 变量方法 -- 函数类&#xff0c;首字母大写&#x…

SpringBoot集成图数据库neo4j实现简单的关联图谱

社交领域&#xff1a;Facebook, Twitter&#xff0c;Linkedin用它来管理社交关系&#xff0c;实现好友推荐 图数据库neo4j安装&#xff1a; 下载镜像&#xff1a;docker pull neo4j:3.5.0运行容器&#xff1a;docker run -d -p 7474:7474 -p 7687:7687 --name neo4j-3.5.0 ne…

Android开发真等于废人,历经30天

前言 回顾一下自己这段时间的经历&#xff0c;三月份的时候&#xff0c;疫情原因公司通知了裁员&#xff0c;我匆匆忙忙地出去面了几家&#xff0c;但最终都没有拿到offer&#xff0c;我感觉今年的寒冬有点冷。到五月份&#xff0c;公司开始第二波裁员&#xff0c;我决定主动拿…

超简单Windows-kafka安装配置

参考大佬文章&#xff1a; Kafka&#xff08;Windows&#xff09;安装配置启动&#xff08;常见错误扫雷&#xff09;教程_kafka在windows上的安装、运行-CSDN博客Kafka&#xff08;Windows&#xff09;安装配置启动&#xff08;常见错误扫雷&#xff09;教程_kafka在windows上…

基于ERNIR3.0文本分类的开发实践

参考&#xff1a;基于ERNIR3.0文本分类&#xff1a;(KUAKE-QIC)意图识别多分类(单标签) - 飞桨AI Studio星河社区 (baidu.com) https://zhuanlan.zhihu.com/p/574666812?utm_id0 遇到的问题&#xff1a;如下 采用paddleNLP下文本分类实例进行分类训练后发现 生成的模型分类不…

嵌入式学习-FreeRTOS-Day1

一、重点 1、VCC和GND VCC&#xff1a; 1、电路中为电源&#xff0c;供应电压 2、3.3v-5v 3、数字信号中用1表示GND&#xff1a; 1、表示地线 2、一般为0v 3、数字信号中用0表示2、电容和电阻 电容 存储电荷 存储能量&#xff1a; 电容器可以在其两个导体板&#xff08;极…

C++之智能指针

为什么会有智能指针 前面我们知道使用异常可能会导致部分资源没有被正常释放, 因为异常抛出之后会直接跳转到捕获异常的地方从而跳过了一些很重要的的代码, 比如说下面的情况&#xff1a; int div() {int a, b;cin >> a >> b;if (b 0)throw invalid_argument(&q…

第三天 Kubernetes进阶实践

第三天 Kubernetes进阶实践 本章介绍Kubernetes的进阶内容&#xff0c;包含Kubernetes集群调度、CNI插件、认证授权安全体系、分布式存储的对接、Helm的使用等&#xff0c;让学员可以更加深入的学习Kubernetes的核心内容。 ETCD数据的访问 kube-scheduler调度策略实践 预选与…

centos7安装maven离线安装

1、从官方网站下载maven文件包 官方下载网站&#xff1a;https://maven.apache.org/download.cgi 2、创建文件夹解压文件 将下载好的安装包&#xff0c;放到创建的目录下&#xff0c;并解压 a、创建/app/maven文件 mkdir /app/mavenb、解压文件 tar -zxvf apache-maven-…

重磅:2024广州国际酒店工程照明展览会

2024广州国际酒店工程照明展览会 Guangzhou international hotel engineering lighting exhibition 2024 时间&#xff1a;2024年12月19-21日 地点&#xff1a;广州.中国进出口商品交易会展馆 承办单位&#xff1a;广州佛兴英耀展览服务有限公司 上海昶文展览服务有限公司…

【Java面试/24春招】技术面试题的准备

Spring MVC的原理 Mybatis的多级缓存机制 线程池的大小和工作原理 上述问题&#xff0c;我们称为静态的问题&#xff0c;具有标准的答案&#xff0c;而且这个答案不会变化&#xff01; 如果没有Spring&#xff0c;会怎么样&#xff1f;IOC这个思想是解决什么问题&#xff1f…

【牛客】VL65 状态机与时钟分频

描述 题目描述&#xff1a; 使用状态机实现时钟分频&#xff0c;要求对时钟进行四分频&#xff0c;占空比为0.25 信号示意图&#xff1a; clk为时钟 rst为低电平复位 clk_out 信号输出 Ps 本题题解是按照1000的状态转移进行的&#xff0c;不按照此状态进行&#xff0c;编译器…

蓝桥杯练习系统(算法训练)ALGO-985 幸运的店家

资源限制 内存限制&#xff1a;256.0MB C/C时间限制&#xff1a;1.0s Java时间限制&#xff1a;3.0s Python时间限制&#xff1a;5.0s 问题描述 炫炫开了一家商店&#xff0c;卖的货只有一个&#xff0c;XXX&#xff0c;XXX卖N元钱。有趣的是&#xff0c;世界上只有面值…

剑指offer 二维数组中的查找 C++

目录 前言 一、题目 二、解题思路 1.直接查找 2.二分法 三、输出结果 前言 最近在牛客网刷题&#xff0c;刷到二维数组的查找&#xff0c;在这里记录一下做题过程 一、题目 描述 在一个二维数组中&#xff08;每个一维数组的长度相同&#xff09;&#xff0c;每一行都按照…

微信小程序开发:记一次提审失败的反馈重审

我在第一次提审小程序的时候很明确说了我这个是接入的阿里云的人像动漫化接口&#xff0c;但是还是给我不通过&#xff1a; 说我涉及AI合成&#xff0c;个人是做不了一点AI相关的东西&#xff0c;一点都不行&#xff1a; 我肯定不接受了&#xff0c;反馈说&#xff1a; 还把…

2024.3.6

作业1&#xff1a;使用C语言完成数据库的增删改 #include <myhead.h>//定义添加员工信息函数 int Add_worker(sqlite3 *ppDb) {//准备sql语句printf("请输入要添加的员工信息:\n");//从终端获取员工信息char rbuf[128]"";fgets(rbuf,sizeof(rbuf),s…

ArrayList的扩容机制

ArrayList 的底层操作机制源码分析 ArrayList中维护一个Object类型的数组elementData transient Object[] elementData; //transient表示瞬间 短暂的&#xff0c;表示该属性不会被序列化当创建ArrayList对象时&#xff0c;如果使用的是无参构造器&#xff0c;则初始elementDa…

C#知识点-22(ADO.NET五个对象,SQL漏洞注入攻击)

ADO.NET 概念&#xff1a;ADO.NET就是一组类库&#xff0c;这组类库可以让我们通过程序的方式访问数据库&#xff0c;就像System.IO的类用类操作文件一样&#xff0c;System.Data这组类是用来操作数据库的&#xff08;不光是MSSql Server&#xff09;&#xff0c;它提供了统一…

【Windows 常用工具系列 14 -- windows 网络驱动映射】

文章目录 windows 网络驱动映射 windows 网络驱动映射 映射网络驱动器的意思是将局域网中的某个目录映射成本地驱动器号。 在windows上将服务器目录映射到本地盘&#xff1a; 进入到服务器执行下面命令既可以看到对应的 IP地址&#xff1a; 将对应的IP地址填入上图中。 映…

Synchronized(三:JVM中锁的优化)

简单来说在JVM中的monitorenter和monitorexit字节码依赖于底层的操作系统的Mutex Lock来实现的&#xff0c;但是由于使用Mutex Lock需要将当前线程挂起并从用户态切换到内核态来执行&#xff0c;这种切换的代价是非常昂贵的&#xff1b;然而在现实中大部分情况下&#xff0c;同…