1 电话数字键盘问题
提供移动数字键盘。您只能按向上、向左、向右或向下至当前按钮的按钮。不允许您按最下面一行的角点按钮(即.*和#)。
移动键盘
给定一个数N,找出给定长度的可能数。
示例:
对于N=1,可能的数字数为10(0、1、2、3、…、9)
对于N=2,可能的数字数为36
可能的数字:00、08、11、12、14、22、21、23、25等等。
如果我们从0开始,有效数字将是00、08(计数:2)
如果我们从1开始,有效数字将是11、12、14(计数:3)
如果我们从2开始,有效数字将是22、21、23、25(计数:4)
如果我们从3开始,有效数字将是33、32、36(计数:3)
如果我们从4开始,有效数字将是44,41,45,47(计数:4)
如果我们从5开始,有效数字将是55,54,52,56,58(计数:5)
………………………………
………………………………
我们需要打印可能的数字。
推荐做法
移动数字键盘
试试看!
N=1是普通情况,可能的数字数为10(0,1,2,3,…,9)
对于N>1,我们需要从某个按钮开始,然后移动到四个方向(向上、向左、向右或向下)中的任何一个,该方向指向有效的按钮(不应转到*、#)。继续这样做,直到获得N个长度编号(深度优先遍历)。
递归解决方案:
移动键盘是4X3的矩形网格(4行3列)
假设Count(i,j,N)表示从位置(i,j)开始的N个长度数字的计数
如果N=1 ,计数(i,j,N)=10
其他的 Count(i,j,N)=所有Count(r,c,N-1)之和,其中(r,c)是新的
长度1从当前有效移动后的位置
位置(i,j)
下面是上述公式的三种实现代码。
2 源代码
using System;
using System.Collections;
using System.Collections.Generic;namespace Legalsoft.Truffer.Algorithm
{public static partial class Algorithm_Gallery{#region 算法1private static int MNKP_Solve_Utility(char[,] keypad, int i, int j, int n){if (keypad == null || n <= 0){return 0;}if (n == 1){return 1;}int[] row = { 0, 0, -1, 0, 1 };int[] col = { 0, -1, 0, 1, 0 };int totalCount = 0;for (int move = 0; move < 5; move++){int ro = i + row[move];int co = j + col[move];if (ro >= 0 && ro <= 3 && co >= 0 && co <= 2 && keypad[ro, co] != '*' && keypad[ro, co] != '#'){totalCount += MNKP_Solve_Utility(keypad, ro, co, n - 1);}}return totalCount;}public static int MNKP_Solve(char[,] keypad, int n){if (keypad == null || n <= 0){return 0;}if (n == 1){return 10;}int totalCount = 0;for (int i = 0; i < 4; i++) {for (int j = 0; j < 3; j++) {if (keypad[i, j] != '*' && keypad[i, j] != '#'){totalCount += MNKP_Solve_Utility(keypad, i, j, n);}}}return totalCount;}#endregion#region 算法2public static int MNKP_Solve_2th(char[,] keypad, int n){if (keypad == null || n <= 0){return 0;}if (n == 1){return 10;}int[] row = { 0, 0, -1, 0, 1 };int[] col = { 0, -1, 0, 1, 0 };int[,] count = new int[10, n + 1];for (int i = 0; i < 10; i++){count[i, 0] = 0;count[i, 1] = 1;}for (int k = 2; k <= n; k++){for (int i = 0; i < 4; i++) {for (int j = 0; j < 3; j++) {if (keypad[i, j] != '*' && keypad[i, j] != '#'){int num = keypad[i, j] - '0';count[num, k] = 0;for (int move = 0; move < 5; move++){int ro = i + row[move];int co = j + col[move];if (ro >= 0 && ro <= 3 && co >= 0 && co <= 2 && keypad[ro, co] != '*' && keypad[ro, co] != '#'){int nextNum = keypad[ro, co] - '0';count[num, k] += count[nextNum, k - 1];}}}}}}int totalCount = 0;for (int i = 0; i < 10; i++){totalCount += count[i, n];}return totalCount;}#endregion#region 算法3public static int MNTP_Solve_3th(char[,] keypad, int n){if (keypad == null || n <= 0){return 0;}if (n == 1){return 10;}int[] odd = new int[10];int[] even = new int[10];int useOdd = 0;for (int i = 0; i < 10; i++){odd[i] = 1;}for (int j = 2; j <= n; j++){useOdd = 1 - useOdd;if (useOdd == 1){even[0] = odd[0] + odd[8];even[1] = odd[1] + odd[2] + odd[4];even[2] = odd[2] + odd[1] + odd[3] + odd[5];even[3] = odd[3] + odd[2] + odd[6];even[4] = odd[4] + odd[1] + odd[5] + odd[7];even[5] = odd[5] + odd[2] + odd[4] + odd[8] + odd[6];even[6] = odd[6] + odd[3] + odd[5] + odd[9];even[7] = odd[7] + odd[4] + odd[8];even[8] = odd[8] + odd[0] + odd[5] + odd[7] + odd[9];even[9] = odd[9] + odd[6] + odd[8];}else{odd[0] = even[0] + even[8];odd[1] = even[1] + even[2] + even[4];odd[2] = even[2] + even[1] + even[3] + even[5];odd[3] = even[3] + even[2] + even[6];odd[4] = even[4] + even[1] + even[5] + even[7];odd[5] = even[5] + even[2] + even[4] + even[8] + even[6];odd[6] = even[6] + even[3] + even[5] + even[9];odd[7] = even[7] + even[4] + even[8];odd[8] = even[8] + even[0] + even[5] + even[7] + even[9];odd[9] = even[9] + even[6] + even[8];}}int totalCount = 0;for (int i = 0; i < 10; i++){totalCount += (useOdd == 1) ? even[i] : odd[i];}return totalCount;}#endregion}
}
3 源程序
using System;
using System.Collections;
using System.Collections.Generic;
namespace Legalsoft.Truffer.Algorithm
{
public static partial class Algorithm_Gallery
{
#region 算法1
private static int MNKP_Solve_Utility(char[,] keypad, int i, int j, int n)
{
if (keypad == null || n <= 0)
{
return 0;
}
if (n == 1)
{
return 1;
}
int[] row = { 0, 0, -1, 0, 1 };
int[] col = { 0, -1, 0, 1, 0 };
int totalCount = 0;
for (int move = 0; move < 5; move++)
{
int ro = i + row[move];
int co = j + col[move];
if (ro >= 0 && ro <= 3 && co >= 0 && co <= 2 && keypad[ro, co] != '*' && keypad[ro, co] != '#')
{
totalCount += MNKP_Solve_Utility(keypad, ro, co, n - 1);
}
}
return totalCount;
}
public static int MNKP_Solve(char[,] keypad, int n)
{
if (keypad == null || n <= 0)
{
return 0;
}
if (n == 1)
{
return 10;
}
int totalCount = 0;
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 3; j++)
{
if (keypad[i, j] != '*' && keypad[i, j] != '#')
{
totalCount += MNKP_Solve_Utility(keypad, i, j, n);
}
}
}
return totalCount;
}
#endregion
#region 算法2
public static int MNKP_Solve_2th(char[,] keypad, int n)
{
if (keypad == null || n <= 0)
{
return 0;
}
if (n == 1)
{
return 10;
}
int[] row = { 0, 0, -1, 0, 1 };
int[] col = { 0, -1, 0, 1, 0 };
int[,] count = new int[10, n + 1];
for (int i = 0; i < 10; i++)
{
count[i, 0] = 0;
count[i, 1] = 1;
}
for (int k = 2; k <= n; k++)
{
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 3; j++)
{
if (keypad[i, j] != '*' && keypad[i, j] != '#')
{
int num = keypad[i, j] - '0';
count[num, k] = 0;
for (int move = 0; move < 5; move++)
{
int ro = i + row[move];
int co = j + col[move];
if (ro >= 0 && ro <= 3 && co >= 0 && co <= 2 && keypad[ro, co] != '*' && keypad[ro, co] != '#')
{
int nextNum = keypad[ro, co] - '0';
count[num, k] += count[nextNum, k - 1];
}
}
}
}
}
}
int totalCount = 0;
for (int i = 0; i < 10; i++)
{
totalCount += count[i, n];
}
return totalCount;
}
#endregion
#region 算法3
public static int MNTP_Solve_3th(char[,] keypad, int n)
{
if (keypad == null || n <= 0)
{
return 0;
}
if (n == 1)
{
return 10;
}
int[] odd = new int[10];
int[] even = new int[10];
int useOdd = 0;
for (int i = 0; i < 10; i++)
{
odd[i] = 1;
}
for (int j = 2; j <= n; j++)
{
useOdd = 1 - useOdd;
if (useOdd == 1)
{
even[0] = odd[0] + odd[8];
even[1] = odd[1] + odd[2] + odd[4];
even[2] = odd[2] + odd[1] + odd[3] + odd[5];
even[3] = odd[3] + odd[2] + odd[6];
even[4] = odd[4] + odd[1] + odd[5] + odd[7];
even[5] = odd[5] + odd[2] + odd[4] + odd[8] + odd[6];
even[6] = odd[6] + odd[3] + odd[5] + odd[9];
even[7] = odd[7] + odd[4] + odd[8];
even[8] = odd[8] + odd[0] + odd[5] + odd[7] + odd[9];
even[9] = odd[9] + odd[6] + odd[8];
}
else
{
odd[0] = even[0] + even[8];
odd[1] = even[1] + even[2] + even[4];
odd[2] = even[2] + even[1] + even[3] + even[5];
odd[3] = even[3] + even[2] + even[6];
odd[4] = even[4] + even[1] + even[5] + even[7];
odd[5] = even[5] + even[2] + even[4] + even[8] + even[6];
odd[6] = even[6] + even[3] + even[5] + even[9];
odd[7] = even[7] + even[4] + even[8];
odd[8] = even[8] + even[0] + even[5] + even[7] + even[9];
odd[9] = even[9] + even[6] + even[8];
}
}
int totalCount = 0;
for (int i = 0; i < 10; i++)
{
totalCount += (useOdd == 1) ? even[i] : odd[i];
}
return totalCount;
}
#endregion
}
}