基于YOLOv8深度学习的农作物幼苗与杂草检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~

《------正文------》

基本功能演示

在这里插入图片描述

摘要:农作物幼苗与杂草检测系统对于实现精准农业和优化作物管理至关重要。杂草的及时检测和处理不仅可以避免和减少与农作物之间的竞争,从而提高作物产量和质量,还可以降低化学除草剂的使用,减少对环境的影响。本文基于YOLOv8深度学习框架,通过2822张图片,训练了一个进行农作物幼苗与杂草检测系统目标检测模型,可检测田间的农作物幼苗与杂草对象。并基于此模型开发了一款带UI界面的农作物幼苗与杂草检测系统,可用于实时检测场景中的农作物幼苗与杂草检测,也更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • 界面参数设置说明
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)保存图片与视频检测结果
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 检测结果识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

农作物幼苗与杂草检测系统对于实现精准农业和优化作物管理至关重要。杂草的及时检测和处理不仅可以避免和减少与农作物之间的竞争,从而提高作物产量和质量,还可以降低化学除草剂的使用,减少对环境的影响。利用YOLOv8算法编写的检测系统可以高效地区分田间作物幼苗和杂草,使管理工作自动化,提升了农田管理效率,同时有助于减少劳动力投入和成本。

农作物幼苗与杂草检测系统的应用场景包括
精准除草:在作物生长初期,准确识别杂草位置,指导机械或无人机进行精准施药,减少除草剂的使用。
作物管理:评估作物长势,基于幼苗数量和分布情况制定灌溉、施肥等农事活动计划。
智能农机引导:引导自动化农业机械,在不损伤作物的情况下进行杂草的去除或管理。
农田监控:提供实时的农田植被监测数据,助力农民及时发现潜在问题并做出调整。
科研分析:为农业研究提供精确的数据,分析作物与杂草的互动和竞争关系,优化种植策略。
收获前筛选:在收获前确保田间杂草数量控制在一定水平,确保作物质量和收获效率。

总结而言,农作物幼苗与杂草检测系统通过YOLOv8算法实现了高准确度和高效率的植被识别,为现代农业生产提供了强大的技术支持。这一系统有助于提升农业生产的科技水平,减少环境影响,并提高农业生产的整体可持续性。随着精准农业概念的深入发展,此类智能检测系统在农业生产中的应用将变得越来越广泛。

博主通过搜集实际场景中的农作物幼苗与杂草相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的农作物幼苗与杂草检测系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可用于实时检测农作物幼苗与杂草,并显示目标数量;
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

界面参数设置说明

在这里插入图片描述

置信度阈值:也就是目标检测时的conf参数,只有检测出的目标置信度大于该值,结果才会显示;
交并比阈值:也就是目标检测时的iou参数,只有目标检测框的交并比大于该值,结果才会显示;

IoU:全称为Intersection over
Union,表示交并比。在目标检测中,它用于衡量模型生成的候选框与原标记框之间的重叠程度。IoU值越大,表示两个框之间的相似性越高。通常,当IoU值大于0.5时,认为可以检测到目标物体。这个指标常用于评估模型在特定数据集上的检测准确度。

(1)图片检测演示

点击打开图片按钮,选择需要检测的图片,或者点击打开文件夹按钮,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。
点击保存按钮,会对检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置,可用下拉框进行目标切换。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击视频按钮,打开选择需要检测的视频,就会自动显示检测结果,再次点击可以关闭视频。
点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击,可关闭摄像头。
在这里插入图片描述

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。
视频检测保存演示如下:
在这里插入图片描述

保存的检测结果文件如下:
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性,在精度和速度方面都具有尖端性能。在之前YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
YOLO各版本性能对比:
在这里插入图片描述

YOLOv8网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

本文使用的数据集为农作物幼苗与杂草图片,并使用Labelimg标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含2822张图片,其中训练集包含2469张图片验证集包含235张图片测试包含118张图片

对每张图像进行如下预处理操作,用于增加样本数量,提高训练模型的检测泛化能力与准确率:

  1. 以90度旋转的概率相等:无旋转,顺时针90度,逆时针90度;
  2. 水平-15°至+15°和垂直-15°至+15°之间的随机剪切;
  3. 随机亮度调整在- 25%和+ 25%之间。

部分图像及标注如下图所示:
在这里插入图片描述

在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入WeedCropData目录下。
在这里插入图片描述

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\WeedCropDetection\datasets\WeedCropData\train\images
val: E:\MyCVProgram\WeedCropDetection\datasets\WeedCropData\valid\images
test: E:\MyCVProgram\WeedCropDetection\datasets\WeedCropData\test\imagesnc: 2
names: ['crop', 'weed']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLOif __name__ == '__main__':# 加载预训练模型model = YOLO("ultralytics/cfg/models/v8/yolov8.yaml").load('yolov8n.pt')# Use the modelresults = model.train(data='datasets/WeedCropData/data.yaml', epochs=250, batch=4)  # 训练模型# 将模型转为onnx格式# success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型目标检测的mAP@0.5值为0.75,结果还是不错的,但还有进一步提升的空间。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/train/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/32212_jpg.rf.895de7ee8d23431a74e06189618d3ce0.jpg"# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)# 检测图片
results = model(img_path)
print(results)
res = results[0].plot()
res = cv2.resize(res,dsize=None,fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款农作物幼苗与杂草检测系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,并发送【源码】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练好的结果文件、训练代码、UI源码、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,并发送【源码】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的农作物幼苗与杂草检测系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/720180.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

kafka启动命令、查看topic命令、查看消息内容命令

kafka启动命令 cd /opt/kafka/kafka_2.12-3.5.1/bin ./kafka-server-start.sh ../config/server.properties Windows环境下用kafka Tool 连不上虚拟机的broker报了unable to connect broker 0, 但是zookeeper可以连接上 server.properties的listeners改为listene…

006-CSS-常见问题汇总

常见问题汇总 1、伪元素与伪类2、偏门但好用的样式3、文字溢出三个点展示4、空白折叠问题5、文字的垂直居中6、 Vue项目中 在父组件中修改子组件样式7、BFC 概念7.1、兄弟元素外边距合并7.2、父子元素外边距塌陷 8、box-sizing8.1、box-sizing: border-box8.2、box-sizing: con…

Vue.js 深度解析:nextTick 原理与应用

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

英特尔/ARM/国产化EMS储能控制器解决方案

新型储能是建设新型电⼒系统、推动能源绿⾊低碳转型的重要装备基础和关键⽀撑技术,是实现碳达峰、碳中和⽬标的重要⽀撑。说到储能,大众首先想到的就是电池,其好坏关系到能量转换效率、系统寿命和安全等重要方面,但储能要想作为一…

三、Distributed DataParallel分布式数据并行原理与应用

帮up宣传一下,优质up值得信赖! B站UP:你可是处女座啊 文章目录 原理一、 DDP二、基本概念三、分布式训练中的通信 实战初始化进程组当前 进程 到底使用哪些数据?模型处理启动改造 loss 打印改造准确率改造数据划分训练前数据打乱…

网络编程 24/3/4 作业

1、广播 发送端 #include <myhead.h> int main(int argc, const char *argv[]) {//创建套接字int sfdsocket(AF_INET,SOCK_DGRAM,0);if(sfd-1){perror("socket error");return -1;}//设置当前套接字允许广播属性int broadcast1;if(setsockopt(sfd,SOL_SOCKET…

vue点击按钮同时下载多个文件

点击下载按钮根据需要的id调接口拿到返回需要下载的文件 再看返回的数据结构 数组中一个对象&#xff0c;就是一个文件&#xff0c;多个对象就是多个文件 下载函数 // 下载tableDownload(row) {getuploadInventoryDownload({ sysBatch: row.sysBatch, fileName: row.fileName…

深入了解直播美颜SDK,美颜SDK是什么?

在实现直播美颜功能的背后&#xff0c;美颜SDK扮演了重要的角色。今天&#xff0c;笔者将为大家讲解美颜SDK的定义、功能以及在直播行业中的应用。 一、美颜SDK的定义 美颜SDK是一种软件开发工具包&#xff0c;旨在为应用开发者提供一套实现美颜功能的接口和算法。它通常包含…

【C语言】动态内存管理------常见错误,以及经典笔试题分析,柔性数组【图文详解】

欢迎来CILMY23的博客喔&#xff0c;本篇为【C语言】动态内存管理------常见错误&#xff0c;以及经典笔试题分析&#xff0c;柔性数组【图文详解】&#xff0c;感谢观看&#xff0c;支持的可以给个一键三连&#xff0c;点赞关注收藏。 前言 在了解完内存操作中最关键的一节---动…

13 环境变量

基本概念 一般指在操作系统中用来指定操作系统运行环境的一些参数 如c/c链接的时候我们不知道动静态库在哪里&#xff0c;照样可以连接成功&#xff0c;原因就是有相关环境编译帮助编译器查找 环境变量有特殊用途&#xff0c;在系统中通常具有全局属性 常见环境变量 PATH&am…

【神经网络与深度学习】时间卷积网络(TCN)

概述 时间卷积网络&#xff08;Temporal Convolutional Network&#xff0c;TCN&#xff09;是一种用于处理时序数据的深度学习模型。它基于卷积神经网络&#xff08;CNN&#xff09;的思想&#xff0c;通过卷积操作来提取和学习时序数据中的特征&#xff0c;并在一系列时序预…

leetcode 热题 100_和为 K 的子数组

题解一&#xff1a; 前缀和数组哈希表&#xff1a;可以计算所有子数组之和暴力求解&#xff0c;但复杂度太高。对于子数组求和的过程&#xff0c;我们可以采用前缀和数组进行优化&#xff0c;前缀和数组中pre[index]代表nums[0]~nusm[index]之和&#xff0c;当我们要计算子数组…

迅速上手:CentOS 系统下 SSH 服务配置指南

前言 掌握 SSH 服务&#xff0c;就像拥有了一把解锁网络世界的钥匙。本文深入浅出地介绍了如何使用 SSH&#xff08;Secure Shell&#xff09;服务&#xff0c;从连接远程服务器到安全文件传输&#xff0c;让你轻松驾驭远程管理与数据传输&#xff0c;提高工作效率&#xff0c…

HLS的硬件加速器设计

完整可点击跳转 目录 硬件加速器的设计方法高层次综合HLSHLS与电路地对应关系HLS的设计规范HLS优化延迟优化降低单个循环的延迟循环展开(Unroll)循环展平(Flatten)多个循环的并行化循环合并循环函数化数据流执行(Dataflow)吞吐量优化循环/函数流水线数据流优化调试硬件加…

Unity 使用AddListener监听事件与取消监听

在Unity中&#xff0c;有时候我们会动态监听组件中的某个事件。当我们使用代码动态加载多次&#xff0c;每次动态加载后我们会发现原来的和新的事件都会监听&#xff0c;如若我们只想取代原来的监听事件&#xff0c;那么就需要取消监听再添加监听了。 如实现如下需求&#xff…

【力扣白嫖日记】626.换座位

前言 练习sql语句&#xff0c;所有题目来自于力扣&#xff08;https://leetcode.cn/problemset/database/&#xff09;的免费数据库练习题。 今日题目&#xff1a; 626.换座位 表&#xff1a;Seat 列名类型idintstudentvarchar id 是该表的主键&#xff08;唯一值&#xf…

寒假作业Day 06

寒假作业Day 06 一、选择题 1、关于内存管理&#xff0c;以下有误的是&#xff08; &#xff09; A: malloc在分配内存空间大小的时候是以字节为单位 B: 如果原有空间地址后面还有足够的空闲空间用来分配&#xff0c;则在原有空间后直接增加新的空间&#xff0c;使得增加新空…

初阶数据结构:二叉树(补充扩展)

目录 1. 堆排序1.1补充&#xff1a;建堆的时间复杂度1.2 堆排序&#xff1a;升序与降序 2. TopK问题3. 二叉树的链式结构及其遍历方式3.1 二叉树的链式结构3.2 二叉树的前序遍历2.2 二叉树的中序遍历2.3 后序遍历2.4 层序遍历 4. 二叉树OJ练习4.1 单值二叉树4.2 判断两棵二叉树…

Qt之QPluginLoader使用插件子项目及插件间通信(简易框架)(含部分源码+注释)

文章目录 一、项目示例1.导航栏操作页面操作示例图2.打开所有页面操作示例图3.打开指定界面操作示例图3.插件重载操作演示 二、插件逻辑个人理解1.QPluginLoader的简单使用2.子插件的基本要素 三、项目结构&#xff08;思路&#xff09;简述1.定义插件接口类2.定义插件类别一个…

C/C++ 纸张尺寸问题(蓝桥杯)

题目描述&#xff1a; 在 ISO 国际标准中定义了 A 0 A0A0 纸张的大小为 1189 m m 841 m m 1189mm841mm1189mm841mm&#xff0c;将 A 0 A0A0 纸沿长边对折后为 A 1 A1A1 纸&#xff0c;大小为 841 m m 594 m m 841mm594mm841mm594mm&#xff0c;在对折的过程中长度直接取下整…