C++11线程同步之互斥锁

C++11线程同步之互斥锁

  • std::mutex
    • 成员函数
    • 线程同步
  • std::lock_guard
  • std::recursive_mutex
  • std::timed_mutex

进行多线程编程,如果多个线程需要对同一块内存进行操作,比如:同时读、同时写、同时读写对于后两种情况来说,如果不做任何的人为干涉就会出现各种各样的错误数据。这是因为线程在运行的时候需要先得到CPU时间片,时间片用完之后需要放弃已获得的CPU资源,就这样线程频繁地在就绪态和运行态之间切换,更复杂一点还可以在就绪态、运行态、挂起态之间切换,这样就会导致线程的执行顺序并不是有序的,而是随机的混乱的,就如同下图中的这个例子一样,理想很丰满现实却很残酷。
在这里插入图片描述
解决多线程数据混乱的方案就是进行线程同步,最常用的就是互斥锁,在C++11中一共提供了四种互斥锁:

  • std::mutex:独占的互斥锁,不能递归使用
  • std::timed_mutex:带超时的独占互斥锁,不能递归使用
  • std::recursive_mutex:递归互斥锁,不带超时功能
  • std::recursive_timed_mutex:带超时的递归互斥锁

std::mutex

不论是在C还是C++中,进行线程同步的处理流程基本上是一致的,C++的mutex类提供了相关的API函数:

成员函数

lock()函数用于给临界区加锁,并且只能有一个线程获得锁的所有权,它有阻塞线程的作用。
函数原型如下:

void lock();

独占互斥锁对象有两种状态:锁定和未锁定。如果互斥锁是打开的,调用lock()函数的线程会得到互斥锁的所有权,并将其上锁,其它线程再调用该函数的时候由于得不到互斥锁的所有权,就会被lock()函数阻塞。当拥有互斥锁所有权的线程将互斥锁解锁,此时被lock()阻塞的线程解除阻塞,抢到互斥锁所有权的线程加锁并继续运行,没抢到互斥锁所有权的线程继续阻塞。

除了使用lock()还可以使用try_lock()获取互斥锁的所有权并对互斥锁加锁,函数原型如下:

bool try_lock();

二者的区别在于try_lock()不会阻塞线程,lock()会阻塞线程:

  • 如果互斥锁是未锁定状态,得到了互斥锁所有权并加锁成功,函数返回true
  • 如果互斥锁是锁定状态,无法得到互斥锁所有权加锁失败,函数返回false

当互斥锁被锁定之后可以通过unlock()进行解锁,但是需要注意的是只有拥有互斥锁所有权的线程也就是对互斥锁上锁的线程才能将其解锁,其它线程是没有权限做这件事情的。该函数的函数原型如下:

void unlock();

通过介绍以上三个函数,使用互斥锁进行线程同步的大致思路差不多就能搞清楚了,主要分为以下几步:

  • 找到多个线程操作的共享资源(全局变量、堆内存、类成员变量等),也可以称之为临界资源
  • 找到和共享资源有关的上下文代码,也就是临界区(下图中的黄色代码部分)
  • 在临界区的上边调用互斥锁类的lock()方法
  • 在临界区的下边调用互斥锁的unlock()方法

线程同步的目的是让多线程按照顺序依次执行临界区代码,这样做线程对共享资源的访问就从并行访问变为了线性访问,访问效率降低了,但是保证了数据的正确性。
在这里插入图片描述
注意:
当线程对互斥锁对象加锁,并且执行完临界区代码之后,一定要使用这个线程对互斥锁解锁,否则最终会造成线程的死锁。死锁之后当前应用程序中的所有线程都会被阻塞,并且阻塞无法解除,应用程序也无法继续运行。

线程同步

举个栗子,我们让两个线程共同操作同一个全局变量,二者交替数数,将数值存储到这个全局变量里边并打印出来。

#include <iostream>
#include <chrono>
#include <thread>
#include <mutex>
using namespace std;int g_num = 0;  // 为 g_num_mutex 所保护
mutex g_num_mutex;void slow_increment(int id)
{for (int i = 0; i < 3; ++i) {g_num_mutex.lock();++g_num;cout << id << " => " << g_num << endl;g_num_mutex.unlock();this_thread::sleep_for(chrono::seconds(1));}
}int main()
{thread t1(slow_increment, 0);thread t2(slow_increment, 1);t1.join();t2.join();
}

在上面的示例程序中,两个子线程执行的任务的一样的(其实也可以不一样,不同的任务中也可以对共享资源进行读写操作),在任务函数中把与全局变量相关的代码加了锁,两个线程只能顺序访问这部分代码(如果不进行线程同步打印出的数据是混乱且无序的)。另外需要强调一点:

  • 在所有线程的任务函数执行完毕之前,互斥锁对象是不能被析构的,一定要在程序中保证这个对象的可用性。
  • 互斥锁的个数和共享资源的个数相等,也就是说每一个共享资源都应该对应一个互斥锁对象。互斥锁对象的个数和线程的个数没有关系。

std::lock_guard

lock_guard是C++11新增的一个模板类,使用这个类,可以简化互斥锁lock()和unlock()的写法,同时也更安全。这个模板类的定义和常用的构造函数原型如下:

// 类的定义,定义于头文件 <mutex>
template< class Mutex >
class lock_guard;// 常用构造函数
explicit lock_guard( mutex_type& m );

lock_guard在使用上面提供的这个构造函数构造对象时,会自动锁定互斥量,而在退出作用域后进行析构时就会自动解锁,从而保证了互斥量的正确操作,避免忘记unlock()操作而导致线程死锁。lock_guard使用了RAII技术,就是在类构造函数中分配资源,在析构函数中释放资源,保证资源出了作用域就释放。

使用lock_guard对上面的例子进行修改,代码如下:

void slow_increment(int id)
{for (int i = 0; i < 3; ++i) {// 使用哨兵锁管理互斥锁lock_guard<mutex> lock(g_num_mutex);++g_num;cout << id << " => " << g_num << endl;this_thread::sleep_for(chrono::seconds(1));}
}

通过修改发现代码被精简了,而且不用担心因为忘记解锁而造成程序的死锁,但是这种方式也有弊端,在上面的示例程序中整个for循环的体都被当做了临界区,多个线程是线性的执行临界区代码的,因此临界区越大程序效率越低,还是需要根据实际情况选择最优的解决方案。

std::recursive_mutex

递归互斥锁std::recursive_mutex允许同一线程多次获得互斥锁,可以用来解决同一线程需要多次获取互斥量时死锁的问题,在下面的例子中使用独占非递归互斥量会发生死锁:

#include <iostream>
#include <thread>
#include <mutex>
using namespace std;struct Calculate
{Calculate() : m_i(6) {}void mul(int x){lock_guard<mutex> locker(m_mutex);m_i *= x;}void div(int x){lock_guard<mutex> locker(m_mutex);m_i /= x;}void both(int x, int y){lock_guard<mutex> locker(m_mutex);mul(x);div(y);}int m_i;mutex m_mutex;
};int main()
{Calculate cal;cal.both(6, 3);return 0;
}

上面的程序中执行了cal.both(6, 3);调用之后,程序就会发生死锁,在both()中已经对互斥锁加锁了,继续调用mult()函数,已经得到互斥锁所有权的线程再次获取这个互斥锁的所有权就会造成死锁(在C++中程序会异常退出,使用C库函数会导致这个互斥锁永远无法被解锁,最终阻塞所有的线程)。要解决这个死锁的问题,一个简单的办法就是使用递归互斥锁std::recursive_mutex,它允许一个线程多次获得互斥锁的所有权。修改之后的代码如下:

#include <iostream>
#include <thread>
#include <mutex>
using namespace std;struct Calculate
{Calculate() : m_i(6) {}void mul(int x){lock_guard<recursive_mutex> locker(m_mutex);m_i *= x;}void div(int x){lock_guard<recursive_mutex> locker(m_mutex);m_i /= x;}void both(int x, int y){lock_guard<recursive_mutex> locker(m_mutex);mul(x);div(y);}int m_i;recursive_mutex m_mutex;
};int main()
{Calculate cal;cal.both(6, 3);cout << "cal.m_i = " << cal.m_i << endl;return 0;
}

虽然递归互斥锁可以解决同一个互斥锁频繁获取互斥锁资源的问题,但是还是建议少用,主要原因如下:

  • 使用递归互斥锁的场景往往都是可以简化的,使用递归互斥锁很容易放纵复杂逻辑的产生,从而导致bug的产生
  • 递归互斥锁比非递归互斥锁效率要低一些。
  • 递归互斥锁虽然允许同一个线程多次获得同一个互斥锁的所有权,但最大次数并未具体说明,一旦超过一定的次数,就会抛出std::system错误。

std::timed_mutex

std::timed_mutex是超时独占互斥锁,主要是在获取互斥锁资源时增加了超时等待功能,因为不知道获取锁资源需要等待多长时间,为了保证不一直等待下去,设置了一个超时时长,超时后线程就可以解除阻塞去做其他事情了。

std::timed_mutex比std::_mutex多了两个成员函数:try_lock_for()和try_lock_until():

void lock();
bool try_lock();
void unlock();// std::timed_mutex比std::_mutex多出的两个成员函数
template <class Rep, class Period>bool try_lock_for (const chrono::duration<Rep,Period>& rel_time);template <class Clock, class Duration>bool try_lock_until (const chrono::time_point<Clock,Duration>& abs_time);
  • try_lock_for函数是当线程获取不到互斥锁资源的时候,让线程阻塞一定的时间长度
  • try_lock_until函数是当线程获取不到互斥锁资源的时候,让线程阻塞到某一个指定的时间点
  • 关于两个函数的返回值:当得到互斥锁的所有权之后,函数会马上解除阻塞,返回true,如果阻塞的时长用完或者到达指定的时间点之后,函数也会解除阻塞,返回false

下面的示例程序中为大家演示了std::timed_mutex的使用:

#include <iostream>
#include <thread>
#include <mutex>
using namespace std;timed_mutex g_mutex;void work()
{chrono::seconds timeout(1);while (true){// 通过阻塞一定的时长来争取得到互斥锁所有权if (g_mutex.try_lock_for(timeout)){cout << "当前线程ID: " << this_thread::get_id() << ", 得到互斥锁所有权..." << endl;// 模拟处理任务用了一定的时长this_thread::sleep_for(chrono::seconds(10));// 互斥锁解锁g_mutex.unlock();break;}else{cout << "当前线程ID: " << this_thread::get_id() << ", 没有得到互斥锁所有权..." << endl;// 模拟处理其他任务用了一定的时长this_thread::sleep_for(chrono::milliseconds(50));}}
}int main()
{thread t1(work);thread t2(work);t1.join();t2.join();return 0;
}

示例代码输出的结果:

当前线程ID: 125776, 得到互斥锁所有权...
当前线程ID: 112324, 没有得到互斥锁所有权...
当前线程ID: 112324, 没有得到互斥锁所有权...
当前线程ID: 112324, 没有得到互斥锁所有权...
当前线程ID: 112324, 没有得到互斥锁所有权...
当前线程ID: 112324, 没有得到互斥锁所有权...
当前线程ID: 112324, 没有得到互斥锁所有权...
当前线程ID: 112324, 没有得到互斥锁所有权...
当前线程ID: 112324, 没有得到互斥锁所有权...
当前线程ID: 112324, 没有得到互斥锁所有权...
当前线程ID: 112324, 得到互斥锁所有权...

在上面的例子中,通过一个while循环不停的去获取超时互斥锁的所有权,如果得不到就阻塞1秒钟,1秒之后如果还是得不到阻塞50毫秒,然后再次继续尝试,直到获得互斥锁的所有权,跳出循环体。

关于递归超时互斥锁std::recursive_timed_mutex的使用方式和std::timed_mutex是一样的,只不过它可以允许一个线程多次获得互斥锁所有权,而std::timed_mutex只允许线程获取一次互斥锁所有权。另外,递归超时互斥锁std::recursive_timed_mutex也拥有和std::recursive_mutex一样的弊端,不建议频繁使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/719772.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《互联网的世界》第四讲-拥塞控制与编码

需要澄清的一个误区是&#xff0c;拥塞绝不是发送的数据量太大导致&#xff0c;而是数据在极短的时间段内到达了同一个地方以至于超过了网络处理容量导致&#xff0c;拥塞的成因一定要考虑时间因素。换句话说&#xff0c;拥塞由大突发导致。 只要 pacing&#xff0c;再多的数据…

2024.3.4训练记录(8)

文章目录 CF 459D Pashmak and Parmidas problemCF 1388C Uncle Bogdan and Country HappinessCF 1525D ArmchairsCF 220B Little Elephant and Array CF 459D Pashmak and Parmida’s problem 题目链接 最近感觉对数据结构题的反应度提升了&#xff0c;这一题是上午看的但是…

动态规划(算法竞赛、蓝桥杯)--树形DP树形背包

1、B站视频链接&#xff1a;E18 树形DP 树形背包_哔哩哔哩_bilibili #include <bits/stdc.h> using namespace std; const int N110; int n,V,p,root; int v[N],w[N]; int h[N],to[N],ne[N],tot; //邻接表 int f[N][N];void add(int a,int b){to[tot]b;ne[tot]h[a];h[a…

数仓项目6.0(一)

尚硅谷大数据项目【电商数仓6.0】企业数据仓库项目_bilibili 数据流转过程 用户➡️业务服务器➡️数据库存储➡️数仓统计分析➡️数据可视化 数据仓库处理流程&#xff1a;数据源➡️加工数据➡️统计筛选数据➡️分析数据 数据库不是为了数据仓库服务的&#xff0c;需要…

B084-SpringCloud-Zuul Config

目录 zuul系统架构和zuul的作用zuul网关实现配置映射路径过滤器 Config概述云端管理本地配置 zuul zuul是分布式和集群后前端统一访问入口 系统架构和zuul的作用 zuul把自己注册进eureka&#xff0c;然后可通过前端传来的服务名发现和访问对应的服务集群 为了预防zuul单点故…

Java 枚举类的深入理解与应用

Java 的枚举类是一种特殊的类&#xff0c;通常表示一组常量。在编译或设计时&#xff0c;当我们知道所有变量的可能性时&#xff0c;尽量使用枚举类型。本文将通过一个具体的例子&#xff0c;深入探讨 Java 枚举类的定义、使用和高级特性。 目录 枚举类的定义与使用枚举类的构造…

【OJ】求和与计算日期

文章目录 1. 前言2. JZ64 求123...n2.1 题目分析2.2 代码 3. HJ73 计算日期到天数转换3.1 题目分析3.2 代码 4. KY222 打印日期4.1 题目分析4.2 代码 1. 前言 下面两个题目均来自牛客&#xff0c;使用的编程语言是c&#xff0c;分享个人的一些思路和代码。 2. JZ64 求123…n …

Vue 赋值后原数据随赋值后的数据的变化而变化

很常见的&#xff0c;当我们直接用“”号等方式直接赋值后 原数据会随赋值后的数据的变化而变化 但是有时候我们的需求是不需要原数据跟随变化 所以怎么解决呢&#xff1f; 解决办法有&#xff1a; 1.使用Object.assign() 方法 2.使用深拷贝函数 JSON.parse() 3.使用第三方库lo…

毕业生信息招聘平台|基于springboot+ Mysql+Java的毕业生信息招聘平台设计与实现(源码+数据库+文档+PPT)

目录 论文参考 摘 要 数据库设计 系统详细设计 文末获取源码联系 论文参考 摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 毕业生信息招聘平台&#xff0c;主要的模块包括查看管理员&a…

#ifndef 和 #pragma once的区别

#ifndef 和 #pragma once 都是用来防止头文件被重复包含的&#xff0c;但它们的工作方式和兼容性有所不同&#xff1a; #ifndef 是 C 的标准语法&#xff0c;它依赖于不重复的宏名称&#xff0c;保证了包含在 #endif 的内容不会被重复包含。这个内容可以是一个文件的所有内容&…

Webpack配置与运行基础教程

在前端开发中&#xff0c;Webpack是一款非常流行的模块打包工具&#xff0c;它可以帮助我们将多个文件打包成一个或多个静态资源文件&#xff0c;从而提高前端项目的性能和可维护性。本文将为你介绍Webpack的基础配置和运行方法&#xff0c;帮助你快速上手Webpack。 什么是Web…

基于Springboot的无人智慧超市管理系统(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的无人智慧超市管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系…

1.3 有哪些文本表示模型?它们各有什么优缺点?

1.3 有哪些文本表示模型?它们各有什么优缺点? 场景描述 文本是一类非常重要的非结构化数据&#xff0c;如何表示文本数据一直是机器学习领域的一个重要研究方向。 知识点 词袋模型(Bag of Words)TF-IDF(Term Frequency-Inverse DocumentFrequency)主题模型(Topic Model)词…

【每日刷题】数组-LC56、LC238、随想录1、LC560

1. LC56 合并区间 题目链接 Arrays.sort先让intervals里的子数组按照子数组的第一个数字值从小到大排列。开一个新数组&#xff0c;newInterval&#xff0c;存放合并好的子数组让intervals的当前子数组i的第一个数字与newInterval的当前子数组index的最后一个数字比较大小&am…

ARM 架构下国密算法库

目录 前言GmSSL编译环境准备下载 GmSSL 源码编译 GmSSL 源码SM4 对称加密算法SM2 非对称加密算法小结前言 在当前的国际形式下,国替势不可挡。操作系统上,银河麒麟、统信 UOS、鸿蒙 OS 等国产系统开始发力,而 CPU 市场,也是百花齐放,有 龙芯(LoongArch架构)、兆芯(X86…

Intel/国产化无人叉车机器视觉专用控制器

无人叉车和机器视觉是两个独立的技术领域&#xff0c;但它们可以结合使用以实现更高效的物流自动化。无人叉车是一种自动化运输工具&#xff0c;可以在没有人为干预的情况下完成货物的搬运和运输。机器视觉是一种人工智能技术&#xff0c;可以让计算机识别和理解图像或视频中的…

YOLO:实时目标检测的革命

目标检测作为计算机视觉领域的一个核心任务&#xff0c;一直以来都是研究的热点。而YOLO&#xff08;You Only Look Once&#xff09;技术作为其中的杰出代表&#xff0c;以其独特的处理方式和卓越的性能&#xff0c;成为了实时目标检测的标杆。本文将探讨YOLO技术的核心原理、…

FPGA时序约束与分析--建立时间与保持时间

文章目录 前言一、定义二、举例说明2.1 建立时间违规2.2 保持时间违规前言 时序约束的定义–设计者根据实际的系统功能,通过时序约束的方式提出时序要求; FPGA 编译工具根据设计者的时序要求,进行布局布线;编译完成后, FPGA 编译工具还需要针对布局布线的结果,套用特定的…

【C++】每日一题,189 轮转数组

给定一个整数数组 nums&#xff0c;将数组中的元素向右轮转 k 个位置&#xff0c;其中 k 是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4] 解释: 向右轮转 1 步: [7,1,2,3,4,5,6] 向右轮转 2 步: [6,7,1,2,3,4,5] 向右轮转 3 步: [5,6,7,1,2,3,…

搜索回溯算法(DFS)1------递归

目录 简介&#xff1a; 递归问题解题的思路模板 例题1&#xff1a;汉诺塔 例题2&#xff1a;合并两个有序链表 例题3&#xff1a;反转链表 例题4&#xff1a;两两交换链表中的节点 例题5&#xff1a;Pow&#xff08;x,n&#xff09;-快速幂 结语&#xff1a; 简介&…