一、spd-conv是什么?
SPD-Conv(Symmetric Positive Definite Convolution)是一种新颖的卷积操作,它主要应用于处理对称正定矩阵(SPD)数据。在传统的卷积神经网络(CNN)中,卷积操作通常用于处理图像数据,而SPD-Conv的引入则将卷积扩展到了处理更加复杂的数据结构,例如在计算机视觉、医学影像分析和材料科学等领域中广泛存在的对称正定矩阵数据。
1.SPD矩阵的特点
对称正定矩阵是一类特殊的矩阵,具有严格的数学定义,通常表示为X∈Rn×nX∈Rn×n,其中 XX 是对称正定矩阵,满足 XT=XXT=X 和对于任意非零向量 vv,有 vTXv>0vTXv>0。这种矩阵广泛应用于协方差矩阵、距离度量、流形学习等领域,并且在一些任务中,数据被表示为SPD矩阵,例如医学图像的核磁共振(MRI)图像。
2.SPD-Conv的引入
- SPD-Conv是针对SPD数据设计的卷积操作。与传统的卷积操作不同,SPD-Conv考虑了SPD矩阵的特殊结构和性质。它在对SPD数据进行卷积时,保持了输入和输出的对称正定性,确保了卷积结果仍然是对称正定矩阵。这种特性使得SPD-Conv适用于处理一些需要保持数据结构特性的任务,例如在医学影像中保持图像的对称性和正定性。
- SPD-Conv是一种新的构建块,用于替代现有的CNN体系结构中的步长卷积和池化层。它由一个空间到深度(SPD)层和一个非步长卷积(Conv)层组成。
- 空间到深度(SPD)层的作用是将输入特征图的每个空间维度降低到通道维度,同时保留通道内的信息。这可以通过将输入特征图的每个像素或特征映射到一个通道来实现。在这个过程中,空间维度的大小会减小,而通道维度的大小会增加。
- 非步长卷积(Conv)层是一种标准的卷积操作,它在SPD层之后进行。与步长卷积不同,非步长卷积不会在特征图上移动,而是对每个像素或特征映射进行卷积操作。这有助于减少在SPD层中可能出现的过度下采样问题,并保留更多的细粒度信息。
- SPD-Conv的组合方式是将SPD层和Conv层串联起来。具体来说,输入特征图首先通过SPD层进行转换,然后输出结果再通过Conv层进行卷积操作。这种组合方式可以在不丢失信息的情况下减少空间维度的尺寸,同时保留通道内的信息,有助于提高CNN对低分辨率图像和小型物体的检测性能。
总结起来,SPD-Conv是一种新的构建块,旨在解决现有CNN体系结构中步长卷积和池化层的问题。它由一个空间到深度(SPD)层和一个非步长卷积(Conv)层组成,能够提高模型对低分辨率图像和小型物体的检测性能,并降低对“良好质量"输入的依赖。
二、使用步骤
1.第一步:先在models/common.py加上
class space_to_depth(nn.Module):# Changing the dimension of the Tensordef __init__(self, dimension=1):super().__init__()self.d = dimensiondef forward(self, x):return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
2.第二步:models/yolo.py加上
elif m is space_to_depth:c2 = 4 * ch[f]
同时在769行里面加入space to death
3.第三步:修改yolov7的yaml文件
# parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple# anchors
anchors:- [12,16, 19,36, 40,28] # P3/8- [36,75, 76,55, 72,146] # P4/16- [142,110, 192,243, 459,401] # P5/32# yolov7 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [32, 3, 1]], # 0[-1, 1, Conv, [64, 3, 2]], # 1-P1/2[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [128, 3, 2]], # 3-P2/4[-1, 1, Conv, [64, 1, 1]],[-2, 1, Conv, [64, 1, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]], # 11[-1, 1, MP, []],[-1, 1, Conv, [128, 1, 1]],[-3, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 2]],[[-1, -3], 1, Concat, [1]], # 16-P3/8[-1, 1, Conv, [128, 1, 1]],[-2, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]], # 24[-1, 1, MP, []],[-1, 1, Conv, [256, 1, 1]],[-3, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 2]],[[-1, -3], 1, Concat, [1]], # 29-P4/16[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [1024, 1, 1]], # 37[-1, 1, MP, []],[-1, 1, Conv, [512, 1, 1]],[-3, 1, Conv, [512, 1, 1]],[-1, 1, Conv, [512, 3, 2]],[[-1, -3], 1, Concat, [1]], # 42-P5/32[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [1024, 1, 1]], # 50]# yolov7 head
head:[[-1, 1, SPPCSPC, [512]], # 51[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[37, 1, Conv, [256, 1, 1]], # route backbone P4[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]], # 63[-1, 1, Conv, [128, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[24, 1, Conv, [128, 1, 1]], # route backbone P3[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1]],[-2, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1]], # 75[-1, 1, MP, []],[-1, 1, Conv, [128, 1, 1]],[-3, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 2]],[[-1, -3, 63], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]], # 88[-1, 1, MP, []],[-1, 1, Conv, [256, 1, 1]],[-3, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 2]],[[-1, -3, 51], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]],[-2, 1, Conv, [512, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]], # 101[-1,1,space_to_depth,[1]], # 2 -P2/4[-1, 1, Conv, [512, 1, 1]], # 103[75, 1, RepConv, [256, 3, 1]],[88, 1, RepConv, [512, 3, 1]],[103, 1, RepConv, [1024, 3, 1]],[[104,105,106], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)]
总结
以上只是·简单添加了一层spd,需要添加多层spd-con可以直接修改yolov7的yaml配置文件,不需要修改其他。
备注:
spd添加层数地方只可以在512层的网络中修改,其他的层数修改会报错,图像张量不匹配,128.256以及1024经过变换之后张量改变对不上。