详解算法的时间复杂度和空间复杂度!

目录

​编辑

1. 算法效率

2. 时间复杂度

2.1 时间复杂度的概念

2.2 大O的表示渐进法

2.3  一个栗子

3. 空间复杂度

4. 常见复杂度对比

 5. 完结散花


​​​​​​​

                                            悟已往之不谏,知来者犹可追  

创作不易,宝子们!如果这篇文章对你们有帮助的话,别忘了给个免费的赞哟~

1. 算法效率

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度

 

2. 时间复杂度

2.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

下面代码中count++语句一共执行了几次呢?        

void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{
for (int j = 0; j < N ; ++ j)
{
++count;
}
}
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}

Func1 执行的基本操作次数 :F(N)=N^2+2*N+10
N = 10 F(N) = 130
N = 100 F(N) = 10210
N = 1000 F(N) = 1002010
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。


2.2 大O的表示渐进法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法以后,Func1的时间复杂度为:O(N^2)
N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

2.3  一个栗子

int Fib(size_t n)
{if (n < 3)return 1;elsereturn Fib(n - 1) + Fib(n - 2);
}

上面代码的时间复杂度是多少呢~

所以上面函数的时间复杂度为O(2^N)~

实际上,递归的时间复杂度等于递归次数*每次递归的执行次数

3. 空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。
举一个栗子啦~

int Fib(size_t n)
{if (n < 3)return 1;elsereturn Fib(n - 1) + Fib(n - 2);
}

 上面代码的空间复杂度是多少呢~

实际上,对于递归来说,空间复杂度=递归次数(即递归深度)~

而该函数的最深的递归深度是n次,所以他的空间复杂度是O(N)~

4. 常见复杂度对比

一般算法常见的复杂度如下~

 5. 完结散花

好了,这期的分享到这里就结束了~

如果这篇博客对你有帮助的话,可以用你们的小手指点一个免费的赞并收藏起来哟~

如果期待博主下期内容的话,可以点点关注,避免找不到我了呢~

我们下期不见不散~~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/717432.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32标准库开发——FLASH闪存

FLASH介绍 一般来说&#xff0c;宣传的FLASH的大小只是说程序存储器的大小&#xff0c;不包括系统存储器以及选项字节这俩个部分 IAP是内置在boot loader中的一道程序&#xff0c;可以用于辅助下载&#xff0c;用户可以通过有线通信协议或者无线协议实现对程序的更新升级。 FLA…

如何使用grafana 下JSON API访问展示接口数据

一.新增connection 点击左侧菜单栏&#xff0c;选择Add new connection 下载安装即可。 二. 增加对应url和参数 1. 添加新的数据源 2. 配置对应url 3.新建仪表盘和添加接口url和参数等

LeetCode每日一题之 移动0

前言&#xff1a; 我的每日一题专栏正式开始更新&#xff0c;我会分享关于我在LeetCode上刷题时的经验&#xff0c;将经典题型拿出来详细讲解&#xff0c;来提升自己及大家的算法能力&#xff0c;希望这篇博客对大家有帮助。 题目介绍&#xff1a; 题目链接&#xff1a;. - …

SpringBoot+aop实现主从数据库的读写分离

读写分离的作用是为了缓解写库&#xff0c;也就是主库的压力&#xff0c;但一定要基于数据一致性的原则&#xff0c;就是保证主从库之间的数据一定要一致。如果一个方法涉及到写的逻辑&#xff0c;那么该方法里所有的数据库操作都要走主库。 一、环境部署 数据库&#xff1a;…

深入了解Java虚拟机(JVM)

Java虚拟机&#xff08;JVM&#xff09;是Java程序运行的核心组件&#xff0c;它负责解释执行Java字节码&#xff0c;并在各种平台上执行。JVM的设计使得Java具有跨平台性&#xff0c;开发人员只需编写一次代码&#xff0c;就可以在任何支持Java的系统上运行。我们刚开始学习Ja…

【leetcode】用队列实现栈

大家好&#xff0c;我是苏貝&#xff0c;本篇博客带大家刷题&#xff0c;如果你觉得我写的还不错的话&#xff0c;可以给我一个赞&#x1f44d;吗&#xff0c;感谢❤️ 点击查看题目 思路: 在做此题之前&#xff0c;我们先要实现队列&#xff0c;这在上个博客中已经写过&#…

学习人工智能的方法及方向!

目录 一、第一部分&#xff1a;了解人工智能 二、人工智能学习路线图 三、职业规划 四、未来展望 五、总结 在这个信息爆炸的时代&#xff0c;想要系统性地学习人工智能&#xff08;AI&#xff09;并找到对应方向的工作&#xff0c;你需要一个明确的学习路径和职业规划。本…

复合机器人是一种集成了移动机器人

复合机器人是一种集成了移动机器人、协作机器人和机器视觉等多项功能的新型机器人。它的开发目的是为了解决工厂物流中最后一米的问题&#xff0c;提供智能搬运解决方案。复合机器人不仅集成了自主移动机器人&#xff08;AMR&#xff09;、机械臂等工作单元&#xff0c;还使用了…

Java电梯模拟

Java电梯模拟 文章目录 Java电梯模拟前言一、UML类图二、代码三、测试 前言 此程序为单线程简单模拟电梯(初版)&#xff0c;如果存在问题或者设计不合理的地方&#xff0c;请大家帮忙指出。 一、UML类图 二、代码 电梯调度器 package cn.xx.evevator;import java.util.*;pub…

Web3游戏基础设施提供商Stardust为Sui上的游戏开发者提供支持

Stardust将其在钱包服务&#xff08;wallets-as-a-service&#xff09;基础设施和用户获取平台方面的专业知识带到了Sui&#xff0c;为游戏开发者提供了关键的帮助&#xff0c;以吸引玩家。近日&#xff0c;Stardust公司宣布将为Sui游戏开发者调整其成熟的钱包服务&#xff08;…

MySQL:开始深入其数据(四)select子查询

select眼熟吧?(都三节了) 又开始学习了 在 MySQL 中&#xff0c;子查询&#xff08;subquery&#xff09;是指在一个查询内嵌套另一个完整的 SELECT 语句。子查询可以嵌套在 SELECT、INSERT、UPDATE、DELETE 语句中&#xff0c;用于从内部查询结果中获取数据&#xff0c;进而完…

基于springboot的宠物咖啡馆平台的设计与实现论文

基于Spring Boot的宠物咖啡馆平台的设计与实现 摘要 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步成熟。本文介绍了基于Spring Boot的宠物咖啡馆平台的设计与实现的开发全过程。通过分析基于Spring Boot的宠物咖啡馆平台的设计与…

每日一题——LeetCode1566.重复至少K次且长度为M的模式

方法一 暴力枚举 var containsPattern function(arr, m, k) {const n arr.length;for (let l 0; l < n - m * k; l) {let offset;for (offset 0; offset < m * k; offset) {if (arr[l offset] ! arr[l offset % m]) {break;}}if (offset m * k) {return true;}}r…

k8s 网络概念与策略控制

一、Kubernetes 基本网络模型 Kubernetes 的容器网络模型可以把它归结为约法三章和四大目标。 1、约法三章 约法三章确保了Kubernetes容器网络模型的基本特性&#xff1a; ① 任意两个 pod 之间可以直接通信&#xff1a;在Kubernetes中&#xff0c;每个 Pod 都被分配了一个…

React-router的创建和第一个组件

需要先学react框架 首先&#xff1a;找到一个文件夹&#xff0c;在文件夹出打开cmd窗口&#xff0c;输入如下图的口令 npx create-react-app demo 然后等待安装 安装完成 接下来进入创建的demo实例 cd demo 然后可以用如下方式打开vscode code . 注意&#xff1a;不要忽略点号与…

Vue--》打造简易直播应用平台项目实战

今天开始使用 vue3 + ts 搭建一个简易直播应用平台项目,因为文章会将项目的每一个地方代码的书写都会讲解到,所以本项目会分成好几篇文章进行讲解,我会在最后一篇文章中会将项目代码开源到我的github上,大家可以自行去进行下载运行,希望本文章对有帮助的朋友们能多多关注本…

支持向量机 SVM | 线性可分:公式推导

目录 一. SVM的优越性二. SVM算法推导小节概念 在开始讲述SVM算法之前&#xff0c;我们先来看一段定义&#xff1a; 支持向量机(Support VecorMachine, SVM)本身是一个二元分类算法&#xff0c;支持线性分类和非线性分类的分类应用&#xff0c;同时通过OvR或者OvO的方式可以应用…

安装Docker及DockerCompose

0.安装Docker Docker 分为 CE 和 EE 两大版本。CE 即社区版&#xff08;免费&#xff0c;支持周期 7 个月&#xff09;&#xff0c;EE 即企业版&#xff0c;强调安全&#xff0c;付费使用&#xff0c;支持周期 24 个月。 Docker CE 分为 stable test 和 nightly 三个更新频道…

10.轮廓系数-机器学习模型性能的常用的评估指标

轮廓系数&#xff08;Silhouette Coefficient&#xff09;是评估聚类算法效果的常用指标之一。它结合了聚类的凝聚度&#xff08;Cohesion&#xff09;和分离度&#xff08;Separation&#xff09;&#xff0c;能够量化聚类结果的紧密度和分离度。 背景 1.聚类分析的背景 在…

CUDA学习笔记01:vs2019环境配置

为了在window11 vs2019下使用CUDA编程&#xff0c;配置了一下环境&#xff0c;但是我电脑一开始自带CUDA&#xff0c;然后再安装的vs2019&#xff0c;这样安装顺序上是不对的&#xff0c;vs2019找不到CUDA配置项&#xff0c;网上找了很多办法貌似都不好使而且很复杂。 那么最快…