【机器学习】实验5,AAAI 会议论文聚类分析

本次实验以AAAI 2014会议论文数据为基础,要求实现或调用无监督聚类算法,了解聚类方法。

任务介绍

每年国际上召开的大大小小学术会议不计其数,发表了非常多的论文。在计算机领域的一些大型学术会议上,一次就可以发表涉及各个方向的几百篇论文。按论文的主题、内容进行聚类,有助于人们高效地查找和获得所需要的论文。本案例数据来源于AAAI 2014上发表的约400篇文章,由UCI公开提供,提供包括标题、作者、关键词、摘要在内的信息,希望大家能根据这些信息,合理地构造特征向量来表示这些论文,并设计实现或调用聚类算法对论文进行聚类。最后也可以对聚类结果进行观察,看每一类都是什么样的论文,是否有一些主题。

基本要求:

  1. 将文本转化为向量,实现或调用无监督聚类算法,对论文聚类,例如10类(可使用已有工具包例如sklearn);

  2. 观察每一类中的论文,调整算法使结果较为合理;

  3. 无监督聚类没有标签,效果较难评价,因此没有硬性指标,跑通即可,主要让大家了解和感受聚类算法,比较简单。

扩展要求:

  1. 对文本向量进行降维,并将聚类结果可视化成散点图。

注:group和topic也不能完全算是标签,因为

  1. 有些文章作者投稿时可能会选择某个group/topic但实际和另外group/topic也相关甚至更相关;

  2. 一篇文章可能有多个group和topic,作为标签会出现有的文章同属多个类别,这里暂不考虑这样的聚类;

  3. group和topic的取值很多,但聚类常常希望指定聚合成出例如5/10/20类;

  4. 感兴趣但同学可以思考利用group和topic信息来量化评价无监督聚类结果,不作要求。

提示:

  1. 高维向量的降维旨在去除一些高相关性的特征维度,保留最有用的信息,用更低维的向量表示高维数据,常用的方法有PCA和t-SNE等;

  2. 降维与聚类是两件不同的事情,聚类实际上在降维前的高维向量和降维后的低维向量上都可以进行,结果也可能截然不同;

  3. 高维向量做聚类,降维可视化后若有同一类的点不在一起,是正常的。在高维空间中它们可能是在一起的,降维后损失了一些信息

实验结果 

from sklearn.feature_extraction.text import  CountVectorizer
from sklearn.metrics import  calinski_harabasz_score
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
import pandas as pd
import numpy as npdef load_data(path='data/[UCI] AAAI-14 Accepted Papers - Papers.csv'):df_data = pd.read_csv(path)df_data = df_data.dropna()return df_datadf = load_data()
df.describe() 
# 去除不好的特征
df_selected = df.drop(['groups', 'topics'], axis=1)
cv = CountVectorizer()
X_features = np.array([[i] for i in range(df.shape[0])])for col in df_selected.columns:tmp = cv.fit_transform(df_selected[col].tolist())feature = tmp.toarray()X_features = np.concatenate((X_features, feature), axis=1)print("特征矩阵的形状:", X_features.shape)

 特征矩阵的形状: (392, 9899)

# 取出group和topics特征作为评价指标
df_cls = df[['groups', 'topics']]
cv = CountVectorizer()
X_cls = [[i] for i in range(df.shape[0])]
for col in df_cls.columns:tmp = cv.fit_transform(df_cls[col])feature = tmp.toarray()X_cls = np.concatenate((X_cls, feature), axis=1)

SSE(Sum of Squared Errors)测量聚类结果中每个样品与所属聚类中心距离的平方和。SSE越小,聚类样品越致密,聚类效果越好。SSE是衡量簇内密度的指标,越小越好。

CH指标(Calinski-HarabaszIndex)是综合考虑集群内密度和集群间分辨率的指标。计算集群间分散度与集群内密度之比。CH指标越大,集群之间的距离越大,集群内的距离越小,集群效果越好。

for pca_num in [2, 5, 7, 10, 30]:X_pca = PCA(n_components=pca_num).fit_transform(X_features)X_cs = PCA(n_components=pca_num).fit_transform(X_cls)print(X_pca.shape)for k in range(5, 16):kmeans = KMeans(n_clusters=k)labels = kmeans.fit_predict(X_pca)# 获取聚类中心centroids = kmeans.cluster_centers_# 计算每个样本与所属簇中心的距离的平方distances = np.sum((X_cs - centroids[labels])**2, axis=1)# 计算 SSEsse = np.sum(distances)# CH指标ch = calinski_harabasz_score(X_cs, labels)score = sse/chprint('k:', k, 'ch:', ch, 'SSE:', sse, 'score:', score)

从结果可以看出降维度在2,k为15的时候聚类效果更好。这里我用了sse和ch的比值作为成绩,越小证明聚类效果越好。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/716359.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RNA-Seq 笔记 [4]

***********************该笔记为初学者笔记,仅供个人参考谨慎搬运代码****************************** samtools 排序压缩和 featureCounts 生成基因计数表 SAM文件和BAM文件 1.SAM格式:是一种通用的比对格式,用来存储reads到参考序列的比…

2024最新算法:鳑鲏鱼优化算法(Bitterling Fish Optimization,BFO)求解23个基准函数(提供MATLAB代码)

一、鳑鲏鱼优化算法 鳑鲏鱼优化算法(Bitterling Fish Optimization,BFO)由Lida Zareian 等人于2024年提出。鳑鲏鱼在交配中,雄性和雌性物种相互接近,然后将精子和卵子释放到水中,但这种方法有一个很大的缺…

BUUCTF---[极客大挑战 2019]Upload1

1.题目描述 2.点开链接&#xff0c;需要上传文件&#xff0c;要求是image&#xff0c;上传文件后缀为jpg的一句话木马&#xff0c;发现被检测到了 3.换另一个木马试试 GIF89a? <script language"php">eval($_REQUEST[1])</script> 发现可以上传成功 4…

ctf_show笔记篇(web入门---文件包含)

目录 文件包含 78-79&#xff1a;最基础的文件包含&#xff0c;使用伪协议&#xff0c;大小写绕过或者通配符绕过&#xff0c;再或者使用其他方法 ​编辑80-81&#xff1a;可采用日志文件绕过或者大小写绕过&#xff08;81只能日志文件绕过&#xff09; ####80-86&#xff1…

『周年纪念』- 降生CSDN三周年的碎碎念

『周年纪念』- 降生CSDN三周年的碎碎念 缘起机缘迷茫厚积薄发 一转眼又过来一年&#xff0c;自己也已经 大四即将毕业。 感觉这一年像是开了加速键&#xff0c;仿佛一瞬就又过去了。统计了一下发现自己在过去的这一年就发布了 2篇文章&#xff0c;2022年发布了 117篇&#x…

PDF 解析问题调研

说点真实的感受 &#xff1a;网上看啥组件都好&#xff0c;实际测&#xff0c;啥组件都不行。效果好的不开源收费&#xff0c;开源的效果不好。测试下来&#xff0c;发现把组件融合起来&#xff0c;还是能不花钱解决问题的&#xff0c;都是麻烦折腾一些。 这里分享了目前网上能…

机器学习中类别不平衡问题的解决方案

类别不平衡问题 解决方案简单方法收集数据调整权重阈值移动 数据层面欠采样过采样采样方法的优劣 算法层面代价敏感集成学习&#xff1a;EasyEnsemble 总结 类别不平衡&#xff08;class-imbalance&#xff09;就是指分类任务中不同类别的训练样例数目差别很大的情况 解决方案…

智能分析网关V4电瓶车检测与烟火算法,全面提升小区消防安全水平

2024年2月23日&#xff0c;南京市某小区因电瓶车停放处起火引发火灾事故&#xff0c;造成巨大人员伤亡和损失。根据国家消防救援局的统计&#xff0c;2023年全国共接报电动自行车火灾2.1万起。电瓶车火灾事故频发&#xff0c;这不得不引起我们的重视和思考&#xff0c;尤其是在…

阿里云A10推理qwen

硬件配置 vCPU&#xff1a;32核 内存&#xff1a;188 GiB 宽带&#xff1a;5 Mbps GPU&#xff1a;NVIDIA A10 24Gcuda 安装 wget https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda-repo-rhel7-12-1-local-12.1.0_530.30.02-1.x86_64.rpm s…

ZDH-大数据采集-支持KETTLE任务

目录 项目源码 预览地址 支持KETTLE介绍 新增KETTLE任务 配置调度KETTLE 重要说明 感谢支持 项目源码 zdh_web:GitHub - zhaoyachao/zdh_web: 大数据采集,抽取平台 预览地址 后台管理-登陆 用户名&#xff1a;zyc 密码&#xff1a;123456 支持KETTLE介绍 当前平台不…

lv20 QT进程线程编程

知识点&#xff1a;启动进程 &#xff0c;线程 &#xff0c;线程同步互斥 1 启动进程 应用场景&#xff1a;通常在qt中打开另一个程序 process模板 QString program “/bin/ls"; QStringList arguments; arguments << "-l" << “-a";QPro…

手撕Java集合之简易版Deque(LinkedList)

在目前&#xff0c;许多互联网公司的面试已经要求能手撕集合源码&#xff0c;集合源码本身算是源码里比较简单的一部分&#xff0c;但是要在面试极短的10来分钟内快速写出一个简易版的源码还是比较麻烦的&#xff0c;很容易出现各种小问题。所以在平时就要注重这方面的联系。 以…

仓储自动化新解:托盘四向穿梭车驶入智能工厂 智能仓储与产线紧密结合

目前&#xff0c;由于对仓库存储量的要求越来越高&#xff0c;拣选、输送以及出入库频率等要求也越来越高&#xff0c;对此&#xff0c;在物流仓储领域&#xff0c;自动化与智能化控制技术得以快速发展&#xff0c;货架穿梭车在自动库领域的应用越来越广泛。现阶段&#xff0c;…

linux之进程理解(1)

目录 1. 冯诺依曼体系结构 2. 操作系统(OS) 2.1 概念 2.2 设计OS的目的 2.3 定位 2.4 理解管理 3. 系统调用和库函数概念 4. 补充 1. 冯诺依曼体系结构 我们常见的计算机&#xff0c;如笔记本。我们不常见的计算机&#xff0c;如服务器&#xff0c;大部分都遵守冯诺依曼体…

chrome选项页面options page配置

options 页面用以定制Chrome浏览器扩展程序的运行参数。 通过Chrome 浏览器的“工具 ->更多工具->扩展程序”&#xff0c;打开chrome://extensions页面&#xff0c;可以看到有的Google Chrome扩展程序有“选项Options”链接&#xff0c;如下图所示。单击“选项Options”…

制作镜像与配置推送阿里云仓库

一、制作jdk镜像 1.1、Alpine linux简介 Alpine Linux是一个轻量级的Linux发行版&#xff0c;专注于安全、简洁和高效。它采用了musl libc和BusyBox&#xff0c;使得系统资源占用较少&#xff0c;启动速度较快。 Alpine Linux也提供了一个简单的包管理工具APK&#xff0c;(注…

【计算机网络_应用层】协议定制序列化反序列化

文章目录 1. TCP协议的通信流程2. 应用层协议定制3. 通过“网络计算器”的实现来实现应用层协议定制和序列化3.1 protocol3.2 序列化和反序列化3.2.1 手写序列化和反序列化3.2.2 使用Json库 3.3 数据包读取3.4 服务端设计3.5 最后的源代码和运行结果 1. TCP协议的通信流程 在之…

深入分析Android运行时环境ART:原理、特点与优化策略

摘要 随着移动互联网的快速发展&#xff0c;智能手机的性能和功能日益强大&#xff0c;其中Android操作系统因其开放性和灵活性而占据主导地位。Android运行时环境&#xff08;ART&#xff09;作为执行应用程序代码的关键组件&#xff0c;在系统性能和用户体验方面起着至关重要…

Vue+SpringBoot打造高校学生管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 学生管理模块2.2 学院课程模块2.3 学生选课模块2.4 成绩管理模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 学生表3.2.2 学院课程表3.2.3 学生选课表3.2.4 学生成绩表 四、系统展示五、核心代码5.1 查询课程5.2 新…

超详细红黑树的模拟实现

前言 有人说设计出AVL树的的人是个大牛&#xff0c;那写红黑树&#xff08;RBTree&#xff09;的人就是天才&#xff01; 上一篇文章&#xff0c;我们已经学习了AVL树&#xff0c;牛牛个人认为AVL树已经够优秀了&#xff0c;那让我们一起探究一下&#xff0c;为什么红黑树比AV…