高维中介数据:基于交替方向乘子法(ADMM)的高维度单模态中介模型的参数估计(入门+实操)

全文摘要

 用于高维度单模态中介模型的参数估计,采用交替方向乘子法(ADMM)进行计算。该包提供了确切独立筛选(SIS)功能来提高中介效应的敏感性和特异性,并支持Lasso、弹性网络、路径Lasso和网络约束惩罚等不同正则化方法。

Pathway Lasso

背景

传统的结构方程建模(SEM)在处理大量中介变量时变得不稳定且计算复杂。Pathway Lasso引入了一个新的惩罚函数,它是一种非凸乘积函数的凸松弛,使得同时估计和选择路径效应成为可能。通过使用交替方向乘子法(ADMM)的算法,Pathway Lasso可以以闭合形式求解参数,并且其估计器在大样本下具有渐近一致性。Pathway Lasso的新方法用于在高维中介变量的情况下估计和选择路径效应。

实现方法

Pathway Lasso是一种针对高维中介变量问题的新方法,它通过结构方程建模(SEM)的正则化途径来处理。在高维设置中,当中介变量的数量接近或大于样本量时,该方法聚焦于估计和选择路径效应。为了改善估计的稳定性,Pathway Lasso避免将高维中介变量直接降低为线性组合,这通常是通过主成分分析(PCA)或其他矩阵分解技术实现的,但这些方法限制了对每个中介路径的解释性。相反,Pathway Lasso引入了一个新的凸惩罚项,即Pathway Lasso惩罚,直接对路径效应进行正则化。这种方法解决了传统Lasso和其他凸正则化方法无法处理的乘积参数问题,因为路径效应通常表示为两个参数的乘积,这是一个非凸函数。通过Pathway Lasso惩罚,可以同时实现路径选择和路径效应估计,允许模型直接处理相关中介变量,提供更直接和简单的中介路径解释,尤其适用于分析多个大脑区域作为中介变量的情况

Pathway Lasso的优势

在路径选择和估计准确性方面相较于其他方法具有以下优势

  • 高路径选择准确性:在模拟数据和fMRI数据集上的应用表明,Pathway Lasso 提出的方法比其他方法具有更高的路径选择准确性。
  • 低估计偏误:Pathway Lasso 方法在估计路径效应时表现出更低的偏差。
  • 解决非凸性问题:Pathway Lasso 引入了一个新的凸惩罚,直接对乘积非凸函数进行正则化,解决了现有方法未处理的问题。
  • 直接和明确的解释性:与使用线性组合(如主成分分析)的方法相比,Pathway Lasso 允许对每个中介路径进行更直接和更简单的解释。
  • 处理相关中介变量:Pathway Lasso 允许直接建模相关中介变量,适合分析多个大脑区域作为中介的设置。

实现方法

随机生成单模态高维度中介分析数据

代码格式

modalityMediationDataGen(n = 100,p = 50,sigmaY = 1,sizeNonZero = c(3, 3, 4),alphaMean = c(6, 4, 2),alphaSd = 0.1,betaMean = c(6, 4, 2),betaSd = 0.1,sigmaM1 = NULL,gamma = 3,generateLaplacianMatrix = FALSE,seed = 20231201
)

 参数说明

n: 高维中介模型中的主体数量。
p: 高维中介变量的数量。
sigmaY: 因变量误差分布的标准差。
sizeNonZero: 非零中介变量的数量,生成大、中、小中介效应的模拟场景。
alphaMean, alphaSd: 中介变量与自变量之间效应的平均值和标准差向量。
betaMean, betaSd: 中介变量与因变量之间效应的平均值和标准差向量。
sigmaM1: 中介变量间误差分布的协方差矩阵,默认为对角矩阵。
gamma: 直接效应的真值。
generateLaplacianMatrix: 逻辑值,指定是否生成网络惩罚的拉普拉斯矩阵。
seed: 随机种子,默认为NULL以使用当前种子

返回结果解释

MediData: 高维中介模型的模拟数据。
MediPara: 中介效应和直接效应的真值。
Info: 输出包括随机种子、参数设置以及生成中介模型的拉普拉斯矩阵。

示例代码 

## 生成分析数据
simuData <- modalityMediationDataGen(seed = 20231201)
str(simuData)
# 输出结果如下
# List of 3
# $ MediData:List of 3
# ..$ X : num [1:100, 1] 0 0 1 0 0 0 1 0 0 1 ...
# ..$ M1: num [1:100, 1:50] 1.023 -0.369 4.812 1.476 0.188 ...
# ..$ Y : num [1:100, 1] -10.27 6.54 175.08 -1.66 17.55 ...
# $ MediPara:List of 3
# ..$ alpha: num [1, 1:50] 5.99 5.99 6 4.11 4.17 ...
# ..$ beta : num [1:50, 1] 6.11 5.96 6.01 4.05 3.88 ...
# ..$ gamma: num [1, 1] 3
# $ Info    :List of 4
# ..$ parameters     :List of 7
# .. ..$ sigmaY     : num 1
# .. ..$ sizeNonZero: num [1:3] 3 3 4
# .. ..$ alphaMean  : num [1:3] 6 4 2
# .. ..$ alphaSd    : num [1:3] 0.1 0.1 0.1
# .. ..$ betaMean   : num [1:3] 6 4 2
# .. ..$ betaSd     : num [1:3] 0.1 0.1 0.1
# .. ..$ sigmaM1    : num [1:50, 1:50] 1 0 0 0 0 0 0 0 0 0 ...
# ..$ trueValue      :List of 1
# .. ..$ gamma: num [1, 1] 3
# ..$ laplacianMatrix: NULL
# ..$ seed           : num 20231201simuData <- modalityMediationDataGen(seed = 20231201, generateLaplacianMatrix = TRUE)
str(simuData)
simuData <- modalityMediationDataGen(n = 50, p = 1000, seed = 20231201)
str(simuData)

交叉验证:cvSingleModalityAdmm

通过设置`numFolds`参数进行交叉验证,可以评估不同惩罚参数下的模型性能,帮助选择最佳模型

`交叉验证的结果,用于评估不同参数组合下Pathway Lasso惩罚方法的效果。输出结果是一个表格,其中包含以下列:

1. **rho**:这是ADMM算法中的ρ参数的候选值,它影响算法的收敛速度和解的质量。
2. **lambda1a**:Pathway Lasso惩罚中的λ1a参数的候选值,L1 范数惩罚中介变量和自变量之间的影响。
3. **lambda1b**:Pathway Lasso惩罚中的λ1b参数的候选值,中介变量和因变量之间影响的 L1 范数惩罚。
4. **lambda1g**:Pathway Lasso惩罚中的λ1g参数的候选值,直接效应的 L1 范数惩罚。默认值为 10 以解决高估问题。
5. **kappa**:Pathway Lasso惩罚的L1范数参数,控制路径正则化的具体形式。控制了路径结构的稀疏性,当 kappa 较小时,惩罚的作用更加平滑,有利于保留更多的特征;当 kappa 较大时,惩罚更加集中,有利于稀疏性,即更多特征被剔除。
6. **nu**:Pathway Lasso惩罚的L2范数参数,同样影响路径正则化。nu: 控制了路径结构中特征之间的相关性,当 nu 较小时,路径结构更加独立,有利于减少特征之间的相关性;当 nu 较大时,更多的特征将共享相同的路径,有助于保留相关性较强的特征。
7. **measure**:评估指标,默认均方根误差(RMSE),用于衡量预测结果与真实结果之间的差异。低的RMSE值通常意味着更好的模型性能,因为这表示预测误差更小。通过比较这些结果,可以选取最优的参数组合来构建最终模型。

8. lambda2alambda2b: 是 Pathway Lasso 方法中额外引入的惩罚项的参数。它们可以控制特征之间的相关性,帮助更好地保留特征间的相关性信息。

  • lambda2a:L2 范数惩罚中介变量和自变量之间的影响
  • lambda2b:中介变量和因变量之间影响的 L2 范数惩罚
# 2种不同的惩罚方法## 1.使用交叉验证进行 ElasticNet 惩罚参数调优
# 执行交叉验证
cvElasticNetResults <- cvSingleModalityAdmm(X = simuData$MediData$X,  # 独立变量的数据矩阵(暴露/治疗/组)Y = simuData$MediData$Y,  # 因变量的数据向量(结果响应)M1 = simuData$MediData$M1,  # 单模态中介变量numFolds = 5,  # 交叉验证的折数typeMeasure = "rmse",  # 评估指标类型,默认为均方根误差rho = c(0.9, 1, 1.1),  # rho 参数的候选值序列lambda1a = c(0.1, 0.5, 1),  # lambda1a 参数的候选值序列lambda1b = c(0.1, 0.3),  # lambda1b 参数的候选值序列lambda1g = c(1, 2),  # lambda1g 参数的候选值序列lambda2a = c(0.5, 1),  # lambda2a 参数的候选值序列lambda2b = c(0.5, 1),  # lambda2b 参数的候选值序列penalty = "ElasticNet"  # 使用 ElasticNet 惩罚
)# 输出结果: 
> cvElasticNetResultsrho lambda1a lambda1b lambda1g lambda2a lambda2b  measure[1,] 0.9      0.1      0.1        1      0.5      0.5 18.23108[2,] 1.0      0.1      0.1        1      0.5      0.5 18.32964[3,] 1.1      0.1      0.1        1      0.5      0.5 18.17303[4,] 0.9      0.5      0.1        1      0.5      0.5 17.77722[5,] 1.0      0.5      0.1        1      0.5      0.5 17.78040[6,] 1.1      0.5      0.1        1      0.5      0.5 17.77446[7,] 0.9      1.0      0.1        1      0.5      0.5 17.80479
[到达getOption("max.print") -- 略过很多行]]
attr(,"class")
[1] "cvSingleModalityAdmm"--------------------------------------------------------------------------
# 2. 使用交叉验证进行 Pathway Lasso 惩罚参数调优(lambda2a, lambda2b 未调整)
# 执行交叉验证
cvPathwayLassoResults <- cvSingleModalityAdmm(X = simuData$MediData$X,  # 独立变量的数据矩阵(暴露/治疗/组)Y = simuData$MediData$Y,  # 因变量的数据向量(结果响应)M1 = simuData$MediData$M1,  # 单模态中介变量numFolds = 5,  # 交叉验证的折数typeMeasure = "rmse",  # 评估指标类型,默认为均方根误差rho = c(0.9, 1, 1.1),  # rho 参数的候选值序列lambda1a = c(0.1, 0.5, 1),  # lambda1a 参数的候选值序列lambda1b = c(0.1, 0.3),  # lambda1b 参数的候选值序列lambda1g = c(1, 2),  # lambda1g 参数的候选值序列lambda2a = 1,  # 给定 lambda2a 参数值lambda2b = 1,  # 给定 lambda2b 参数值penalty = "PathwayLasso",  # 使用 Pathway Lasso 惩罚penaltyParameterList = list(kappa = c(0.5, 1), nu = c(1, 2))  # 惩罚参数列表,包括 kappa 和 nu
)# 输出结果:
cvPathwayLassoResultsrho lambda1a lambda1b lambda1g kappa nu  measure[1,] 0.9      0.1      0.1        1   0.5  1 19.46943[2,] 1.0      0.1      0.1        1   0.5  1 19.37725[3,] 1.1      0.1      0.1        1   0.5  1 19.40920[4,] 0.9      0.5      0.1        1   0.5  1 19.49747
[到达getOption("max.print") -- 略过很多行]]
attr(,"class")
[1] "cvSingleModalityAdmm"

将权矩阵转换为拉普拉斯矩阵的辅助函数:weightToLaplacian() 

# 将权矩阵转换为拉普拉斯矩阵的辅助函数:weightToLaplacian() 
set.seed(20231201) # 设置随机数种子
p <- 5 # 设置节点数
W <- matrix(0, nrow = p, ncol = p) # 初始化权矩阵
W[lower.tri(W)] <- runif(p*(p-1)/2, 0, 1) # 生成随机权的下三角矩阵
W[upper.tri(W)] <- t(W)[upper.tri(W)] # 使权矩阵对称
diag(W) <- 1 # 对角线元素设为1
W
# 输出结果如下
# [,1]      [,2]       [,3]      [,4]       [,5]
# [1,] 1.0000000 0.1623753 0.48119340 0.4406640 0.36219565
# [2,] 0.1623753 1.0000000 0.41138920 0.1344408 0.64471664
# [3,] 0.4811934 0.4113892 1.00000000 0.5306324 0.08042435
# [4,] 0.4406640 0.1344408 0.53063239 1.0000000 0.85450197
# [5,] 0.3621956 0.6447166 0.08042435 0.8545020 1.00000000(L <- weightToLaplacian(W)) # 将权矩阵转换为拉普拉斯矩阵
# 输出结果如下
# [,1]        [,2]        [,3]        [,4]        [,5]
# [1,]  0.59124083 -0.06767837 -0.19443191 -0.16374871 -0.13501050
# [2,] -0.06767837  0.57499652 -0.16949748 -0.05094059 -0.24505056
# [3,] -0.19443191 -0.16949748  0.60058145 -0.19491464 -0.02963414
# [4,] -0.16374871 -0.05094059 -0.19491464  0.66218945 -0.28956112
# [5,] -0.13501050 -0.24505056 -0.02963414 -0.28956112  0.66007653

拟合高维单模态中介模型

根据cvSingleModalityAdmm的结果挑选最佳参数,拟合🔤高维单模态中介模型🔤

penalty方法

penalty方法有3种+ 各自对应的惩罚参数列表【penaltyParameterList】

  • 默认为弹性网络 ElasticNet
    • lambda1a, lambda1b, lambda1g, lambda2a, lambda2b
  • 路径套索(PathywayLasso)
    • kappa 路径 Lasso 的 L1 范数惩罚。
    • nu 路径 Lasso 的 L2 范数惩罚
  • 网络约束惩罚(Network)
    • 需要应用于网络惩罚的拉普拉斯矩阵

确定独立性筛选 (SIS)

SIS:指定是否执行确定独立性筛选 (sure independence screening, SIS)

  • SISThreshold,中介者目标降维的阈值。默认值为“2”,这会将维度减少到 2*n/log(n)。n代表样本量

输出结果

  • gamma:🔤估计直接影响🔤
  • alpha:🔤估计中介变量和自变量之间的影响。🔤
  • beta:🔤估计中介变量和因变量之间的影响🔤

综合应用

1. ElasticNet 惩罚
## 生成经验数据
simuData <- modalityMediationDataGen(seed = 20231201, generateLaplacianMatrix = TRUE)## ElasticNet 惩罚的参数估计
modelElasticNet <- singleModalityAdmm( X = simuData$MediData$X, Y = simuData$MediData$Y, M1 = simuData$MediData$M1, rho = 1, lambda1a = 1, lambda1b = 0.1, lambda1g = 2, lambda2a = 1, lambda2b = 1, penalty = "ElasticNet" )# 拟合并预测
fitted(modelElasticNet) 
predict(modelElasticNet, matrix(c(0, 1), ncol=1))# SIS独立性筛选
simuData <- modalityMediationDataGen(n = 50, p = 1000, seed = 20231201)
modelElasticNetSIS <- singleModalityAdmm( X = simuData$MediData$X, Y = simuData$MediData$Y, M1 = simuData$MediData$M1, rho = 1, lambda1a = 1, lambda1b = 0.1, lambda1g = 2, lambda2a = 1, lambda2b = 1, penalty = "ElasticNet", SIS = TRUE ) fitted(modelElasticNetSIS) 
predict(modelElasticNetSIS, matrix(c(0, 1), ncol=1))
2. 使用拉普拉斯矩阵进行网络惩罚的参数估计

# 1.使用模拟数据中的拉普拉斯矩阵
simuData <- modalityMediationDataGen(seed = 20231201, generateLaplacianMatrix = TRUE)modelNetwork <- singleModalityAdmm( X = simuData$MediData$X, Y = simuData$MediData$Y, M1 = simuData$MediData$M1, rho = 1, lambda1a = 1, lambda1b = 0.1, lambda1g = 2, lambda2a = 1, lambda2b = 1, penalty = "Network", penaltyParameterList = list(laplacianMatrix = simuData$Info$laplacianMatrix) )# 2. 自定义的拉普拉斯矩阵set.seed(20231201) 
p <- ncol(simuData$MediData$M1) 
W <- matrix(0, nrow = p, ncol = p) 
W[lower.tri(W)] <- runif(p*(p-1)/2, 0, 1) 
W[upper.tri(W)] <- t(W)[upper.tri(W)] 
diag(W) <- 1 
L <- weightToLaplacian(W) modelNetwork <- singleModalityAdmm( X = simuData$MediData$X, Y = simuData$MediData$Y, M1 = simuData$MediData$M1, rho = 1, lambda1a = 1, lambda1b = 0.1, lambda1g = 2, lambda2a = 1, lambda2b = 1, penalty = "Network", penaltyParameterList = list(laplacianMatrix = L) )
3. Pathway Lasso 惩罚的参数估计
simuData <- modalityMediationDataGen(seed = 20231201, generateLaplacianMatrix = TRUE)modelPathwayLasso <- singleModalityAdmm( X = simuData$MediData$X, Y = simuData$MediData$Y, M1 = simuData$MediData$M1, rho = 1, lambda1a = 1, lambda1b = 0.1, lambda1g = 2, lambda2a = 1, lambda2b = 1, penalty = "PathwayLasso", penaltyParameterList = list(kappa = 1, nu = 2) )

如果您看到这里,有钱的打个小💴赏~,没钱的点个"赞"赏,输出不易,感谢支持!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/716316.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

npm 镜像源切换与设置

项目背景 依赖安装中断或响应特别慢。 可以看到当前所用的镜像是 https://registry.npmjs.org 。 切换淘宝镜像之后总算能够安装下来 命令行模式 查看当前镜像源 # 查看当前镜像源 npm config get registry 可以看到默认情况下是官方默认全局镜像 https://registry.npmjs.o…

竞争加剧下,登顶后的瑞幸该做什么?

瑞幸咖啡仅用短短18个月时间从品牌创立到纳斯达克上市&#xff0c;刷新全球最快上市记录。2020年因交易造假事件被勒令退市股价暴跌80%&#xff0c;有人说这个创造了赴美IPO奇迹的“巨婴”将是下一个倒下的ofo。2023年瑞幸咖啡以逆势超速增长领跑咖啡赛道有力回应了市场的质疑&…

Java多线程实现发布和订阅

目录 简介 步骤 1: 定义消息类 步骤 2: 创建发布者 步骤 3: 创建订阅者 步骤 4: 实现发布-订阅模型 前言-与正文无关 生活远不止眼前的苦劳与奔波&#xff0c;它还充满了无数值得我们去体验和珍惜的美好事物。在这个快节奏的世界中&#xff0c;我们往往容易陷入工作的漩涡…

棋牌室计时计费管理系统的灯控器连接教程

棋牌室计时计费管理系统的灯控器连接教程 一、前言 以下教程以 佳易王棋牌室计时计费管理系统软件V18.0为例说明 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 如上图&#xff0c;计时计费软件在开始计时的时候&#xff0c;点击 开始计时 如果连接了…

YOLOv9独家改进|动态蛇形卷积Dynamic Snake Convolution与空间和通道重建卷积SCConv与RepNCSPELAN4融合

专栏介绍&#xff1a;YOLOv9改进系列 | 包含深度学习最新创新&#xff0c;主力高效涨点&#xff01;&#xff01;&#xff01; 一、改进点介绍 Dynamic Snake Convolution是一种针对细长微弱的局部结构特征与复杂多变的全局形态特征设计的卷积模块。 SCConv是一种即插即用的空间…

华为OD机试真题C卷-篇6

100分值题 宽度最小的子矩阵部门人力分配电脑病毒感染会议室占用时间段 宽度最小的子矩阵 给定一个n行 * m列的矩阵&#xff1b;给定一个k个整数的数组k_list&#xff1b;在n*m的矩阵中找一个宽度最小的子矩阵&#xff0c;该子矩阵包含k_list中所有的整数&#xff1b; 输入描述…

项目管理:高效推动项目成功的关键

项目管理&#xff1a;高效推动项目成功的关键 在当今竞争激烈的商业环境中&#xff0c;项目管理已成为企业实现目标和取得成功的关键因素。有效的项目管理不仅能够确保项目按时完成&#xff0c;还能在预算范围内达到预期的质量标准。本文将探讨项目管理的重要性、关键环节以及…

Maven安装并配置本地仓库

一、安装Maven 1.下载链接 Maven官网下载链接 Binary是可执行版本&#xff0c;已经编译好可以直接使用。 Source是源代码版本&#xff0c;需要自己编译成可执行软件才可使用。 tar.gz和zip两种压缩格式,其实这两个压缩文件里面包含的内容是同样的,只是压缩格式不同 tar.gz格…

Stable Video文本生成视频公测地址——Scaling Latent Video Diffusion Models to Large Datasets

近期&#xff0c;Stability AI发布了首个开放视频模型——"Stable Video"&#xff0c;该创新工具能够将文本和图像输入转化为生动的场景&#xff0c;将概念转换成动态影像&#xff0c;生成出电影级别的作品&#xff0c;旨在满足广泛的视频应用需求&#xff0c;包括媒…

STM32 DMA入门指导

什么是DMA DMA&#xff0c;全称直接存储器访问&#xff08;Direct Memory Access&#xff09;&#xff0c;是一种允许硬件子系统直接读写系统内存的技术&#xff0c;无需中央处理单元&#xff08;CPU&#xff09;的介入。下面是DMA的工作原理概述&#xff1a; 数据传输触发&am…

解决Java并发问题的常见思路

写在文章开头 近期对一些比较老的项目进行代码走查&#xff0c;碰到一些极端的并发编程恶习&#xff0c;所以笔者就基于此文演示这类问题以及面对并发编程时我们应该需要了解一些常见套路。 Hi&#xff0c;我是sharkChili&#xff0c;是个不断在硬核技术上作死的java coder&am…

基于 Amazon EKS 的 Stable Diffusion ComfyUI 部署方案

01 背景介绍 Stable Diffusion 作为当下最流行的开源 AI 图像生成模型在游戏行业有着广泛的应用实践&#xff0c;无论是 ToC 面向玩家的游戏社区场景&#xff0c;还是 ToB 面向游戏工作室的美术制作场景&#xff0c;都可以发挥很大的价值&#xff0c;如何更好地使用 Stable Dif…

基于SpringBoot的教师考勤管理系统(赠源码)

作者主页&#xff1a;易学蔚来-技术互助文末获取源码 简介&#xff1a;Java领域优质创作者 Java项目、简历模板、学习资料、面试题库 教师考勤管理系统是基于JavaVueSpringBootMySQL实现的&#xff0c;包含了管理员、学生、教师三类用户。该系统实现了班级管理、课程安排、考勤…

基于springboot的足球俱乐部管理系统的设计与实现

** &#x1f345;点赞收藏关注 → 私信领取本源代码、数据库&#x1f345; 本人在Java毕业设计领域有多年的经验&#xff0c;陆续会更新更多优质的Java实战项目希望你能有所收获&#xff0c;少走一些弯路。&#x1f345;关注我不迷路&#x1f345;** 一 、设计说明 1.1 课题…

npm ERR! code ERESOLVE

1、问题概述&#xff1f; 执行npm install命令的时候报错如下&#xff1a; tangxiaochuntangxiaochundeMacBook-Pro stf % npm install npm ERR! code ERESOLVE npm ERR! ERESOLVE unable to resolve dependency tree npm ERR! npm ERR! While resol…

LeetCode102.二叉树的层序遍历

题目 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 示例 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;[[3],[9,20],[15,7]]输入&#xff1a;root [1] 输出&am…

SpringCloud-MQ消息队列

一、消息队列介绍 MQ (MessageQueue) &#xff0c;中文是消息队列&#xff0c;字面来看就是存放消息的队列。也就是事件驱动架构中的Broker。消息队列是一种基于生产者-消费者模型的通信方式&#xff0c;通过在消息队列中存放和传递消息&#xff0c;实现了不同组件、服务或系统…

2024全新手机软件下载应用排行、平台和最新发布网站,采用响应式织梦模板

这是一款简洁蓝色的手机软件下载应用排行、平台和最新发布网站&#xff0c;采用响应式织梦模板。 主要包括主页、APP列表页、APP详情介绍页、新闻资讯列表、新闻详情页、关于我们等模块页面。 地 址 &#xff1a; runruncode.com/php/19703.html 软件程序演示图&#xff1a;…

最小高度树-力扣(Leetcode)

题目链接 最小高度树 思路&#xff1a;本质上是找到树中的最长路径。当最长路径上中间点&#xff08;若路经长为偶数&#xff0c;则中间点仅有一个&#xff0c;否者中间点有两个&#xff09;作为根时&#xff0c;此时树高最小。 Code: class Solution { public://拓扑排序int…

【深度优先搜索】【树】【C++算法】2003. 每棵子树内缺失的最小基因值

作者推荐 动态规划的时间复杂度优化 本文涉及知识点 深度优先搜索 LeetCode2003. 每棵子树内缺失的最小基因值 有一棵根节点为 0 的 家族树 &#xff0c;总共包含 n 个节点&#xff0c;节点编号为 0 到 n - 1 。给你一个下标从 0 开始的整数数组 parents &#xff0c;其中…