Carla自动驾驶仿真九:车辆变道路径规划

文章目录

  • 前言
  • 一、关键函数
  • 二、完整代码
  • 效果


前言

本文介绍一种在carla中比较简单的变道路径规划方法,主要核心是调用carla的GlobalRoutePlanner模块和PID控制模块实现变道,大体的框架如下图所示。

在这里插入图片描述

在这里插入图片描述


一、关键函数

1、get_spawn_point(),该函数根据指定road和lane获得waypoint(这里之所以这么用是为了选择一条比较长的直路)。具体用法可以参考上篇文章:Carla自动驾驶仿真八:两种查找CARLA地图坐标点的方法

def get_spawn_point(self,target_road_id,target_lane_id):#每隔5m生成1个waypointwaypoints = self.map.generate_waypoints(5.0)# 遍历路点for waypoint in waypoints:if waypoint.road_id == target_road_id:lane_id = waypoint.lane_id# 检查是否已经找到了特定车道ID的路点if lane_id == target_lane_id:location = waypoint.transform.locationlocation.z = 1ego_spawn_point = carla.Transform(location, waypoint.transform.rotation)breakreturn ego_spawn_point

2、should_cut_in(),用于主车和目标车的相对距离判断,当目标车超越自车一定距离时,开始给cut_in_flag置Ture,并在下一步骤规划变道路径和执行变道操作。

 def should_cut_in(self,npc_vehicle, ego_vehicle, dis_to_cut=5):location1 = npc_vehicle.get_transform().locationlocation2 = ego_vehicle.get_transform().locationrel_x = location1.x - location2.xrel_y = location1.y - location2.ydistance = math.sqrt(rel_x * rel_x + rel_y * rel_y)print("relative dis",distance)#rel_x 大于等于0,说明目标车在前方if rel_x >= 0:distance = distanceelse:distance = -distanceif distance >= dis_to_cut:print("The conditions for changing lanes are met.")cut_in_flag = Trueelse:cut_in_flag = Falsereturn cut_in_flag

3、cal_target_route(),函数中调用了Carla的GlobalRoutePlanner模块,能根据起点和终点自动生成车辆行驶的路径(重点),我这里的变道起点是两车相对距离达到(阈值)时目标车的当前位置,而终点就是左侧车道前方target_dis米。将起点和终点代入到route = grp.trace_route(current_location, target_location)就能获取到规划路径route

在这里插入图片描述

 def cal_target_route(self,vehicle=None,lanechange="left",target_dis=20):#实例化道路规划模块grp = GlobalRoutePlanner(self.map, 2)#获取npc车辆当前所在的waypointcurrent_location = vehicle.get_transform().locationcurrent_waypoint = self.map.get_waypoint(current_location)#选择变道方向if "left" in lanechange:target_org_waypoint = current_waypoint.get_left_lane()elif "right" in lanechange:target_org_waypoint = current_waypoint.get_right_lane()#获取终点的位置target_location = target_org_waypoint.next(target_dis)[0].transform.location#根据起点和重点生成规划路径route = grp.trace_route(current_location, target_location)return route

4、speed_con_by_pid(),通过PID控制车辆的达到目标速度,pid是通过实例化Carla的PIDLongitudinalController实现。由于pid.run_step()只返回油门的控制,需要增加刹车的逻辑。

 control_signal = pid.run_step(target_speed=target_speed, debug=False)throttle = max(min(control_signal, 1.0), 0.0)  # 确保油门值在0到1之间brake = 0.0  # 根据需要设置刹车值if control_signal < 0:throttle = 0.0brake = abs(control_signal)  # 假设控制器输出的负值可以用来刹车vehilce.apply_control(carla.VehicleControl(throttle=throttle, brake=brake))

5、PID = VehiclePIDController()是carla的pid横纵向控制模块,通过设置目标速度和目标终点来实现轨迹控制control = PID.run_step(target_speed, target_waypoint),PID参数我随便调了一组,有兴趣的可以深入调一下。


二、完整代码

import carla
import time
import math
import sys#修改成自己的carla路径
sys.path.append(r'D:\CARLA_0.9.14\WindowsNoEditor\PythonAPI\carla')
from agents.navigation.global_route_planner import GlobalRoutePlanner
from agents.navigation.controller import VehiclePIDController,PIDLongitudinalController
from agents.tools.misc import draw_waypoints, distance_vehicle, vector, is_within_distance, get_speedclass CarlaWorld:def __init__(self):self.client = carla.Client('localhost', 2000)self.world = self.client.load_world('Town06')# self.world = self.client.get_world()self.map = self.world.get_map()# 开启同步模式settings = self.world.get_settings()settings.synchronous_mode = Truesettings.fixed_delta_seconds = 0.05def spawm_ego_by_point(self,ego_spawn_point):vehicle_bp = self.world.get_blueprint_library().filter('vehicle.tesla.*')[0]ego_vehicle = self.world.try_spawn_actor(vehicle_bp,ego_spawn_point)return ego_vehicledef spawn_npc_by_offset(self,ego_spawn_point,offset):vehicle_bp = self.world.get_blueprint_library().filter('vehicle.tesla.*')[0]# 计算新的生成点rotation = ego_spawn_point.rotationlocation = ego_spawn_point.locationlocation.x += offset.xlocation.y += offset.ylocation.z += offset.znpc_transform = carla.Transform(location, rotation)npc_vehicle = self.world.spawn_actor(vehicle_bp, npc_transform)return npc_vehicledef get_spawn_point(self,target_road_id,target_lane_id):#每隔5m生成1个waypointwaypoints = self.map.generate_waypoints(5.0)# 遍历路点for waypoint in waypoints:if waypoint.road_id == target_road_id:lane_id = waypoint.lane_id# 检查是否已经找到了特定车道ID的路点if lane_id == target_lane_id:location = waypoint.transform.locationlocation.z = 1ego_spawn_point = carla.Transform(location, waypoint.transform.rotation)breakreturn ego_spawn_pointdef cal_target_route(self,vehicle=None,lanechange="left",target_dis=20):#实例化道路规划模块grp = GlobalRoutePlanner(self.map, 2)#获取npc车辆当前所在的waypointcurrent_location = vehicle.get_transform().locationcurrent_waypoint = self.map.get_waypoint(current_location)#选择变道方向if "left" in lanechange:target_org_waypoint = current_waypoint.get_left_lane()elif "right" in lanechange:target_org_waypoint = current_waypoint.get_right_lane()#获取终点的位置target_location = target_org_waypoint.next(target_dis)[0].transform.location#根据起点和重点生成规划路径route = grp.trace_route(current_location, target_location)return routedef draw_target_line(self,waypoints):# 获取世界和调试助手debug = self.world.debug# 设置绘制参数life_time = 60.0  # 点和线将持续显示的时间(秒)color = carla.Color(255, 0, 0)thickness = 0.3  # 线的厚度for i in range(len(waypoints) - 1):debug.draw_line(waypoints[i][0].transform.location + carla.Location(z=0.5),waypoints[i + 1][0].transform.location + carla.Location(z=0.5),thickness=thickness,color=color,life_time=life_time)def draw_current_point(self,current_point):self.world.debug.draw_point(current_point,size=0.1, color=carla.Color(b=255), life_time=60)def speed_con_by_pid(self,vehilce=None,pid=None,target_speed=30):control_signal = pid.run_step(target_speed=target_speed, debug=False)throttle = max(min(control_signal, 1.0), 0.0)  # 确保油门值在0到1之间brake = 0.0  # 根据需要设置刹车值if control_signal < 0:throttle = 0.0brake = abs(control_signal)  # 假设控制器输出的负值可以用来刹车vehilce.apply_control(carla.VehicleControl(throttle=throttle, brake=brake))def set_spectator(self,vehicle):self.world.get_spectator().set_transform(carla.Transform(vehicle.get_transform().location +carla.Location(z=50), carla.Rotation(pitch=-90)))def should_cut_in(self,npc_vehicle, ego_vehicle, dis_to_cut=5):location1 = npc_vehicle.get_transform().locationlocation2 = ego_vehicle.get_transform().locationrel_x = location1.x - location2.xrel_y = location1.y - location2.ydistance = math.sqrt(rel_x * rel_x + rel_y * rel_y)print("relative dis",distance)if rel_x >= 0:distance = distanceelse:distance = -distanceif distance >= dis_to_cut:print("The conditions for changing lanes are met.")cut_in_flag = Trueelse:cut_in_flag = Falsereturn cut_in_flagif __name__ == '__main__':try:CARLA = CarlaWorld()#根据road_id和lane_id选择出生点start_point = CARLA.get_spawn_point(target_road_id=40, target_lane_id=-5)#生成自车ego_vehicle = CARLA.spawm_ego_by_point(start_point)#设置初始的观察者视角CARLA.set_spectator(ego_vehicle)#相对ego生成目标车relative_ego = carla.Location(x=-10, y=3.75, z=0)npc_vehicle = CARLA.spawn_npc_by_offset(start_point, relative_ego)# 设置ego自动巡航ego_vehicle.set_autopilot(True)#设置目标车初始速度的纵向控制PIDinitspd_pid = PIDLongitudinalController(npc_vehicle, K_P=1.0, K_I=0.1, K_D=0.05)#设置目标车的cut_in的横纵向控制PIDargs_lateral_dict = {'K_P': 0.8, 'K_D': 0.8, 'K_I': 0.70, 'dt': 1.0 / 10.0}args_long_dict = {'K_P': 1, 'K_D': 0.0, 'K_I': 0.75, 'dt': 1.0 / 10.0}PID = VehiclePIDController(npc_vehicle, args_lateral_dict, args_long_dict)waypoints = Nonewaypoint_index = 0need_cal_route = Truecut_in_flag = Falsearrive_target_point = Falsetarget_distance_threshold = 2.0  # 切换waypoint的距离start_sim_time = time.time()while not arrive_target_point:CARLA.world.tick()# 更新观察者的视野CARLA.set_spectator(ego_vehicle)#计算目标车的初始速度ego_speed = (ego_vehicle.get_velocity().x  * 3.6) #km/htarget_speed = ego_speed + 8 #目标车的目标速度#是否满足cut_in条件if cut_in_flag:if need_cal_route:#生成车侧车道前方30m的waypointwaypoints = CARLA.cal_target_route(npc_vehicle,lanechange= "left",target_dis=30)CARLA.draw_target_line(waypoints)need_cal_route = False# 如果已经计算了路线if waypoints is not None and waypoint_index < len(waypoints):# 获取当前目标路点target_waypoint = waypoints[waypoint_index][0]# 获取车辆当前位置transform = npc_vehicle.get_transform()#绘制当前运行的点CARLA.draw_current_point(transform.location)# 计算车辆与当前目标路点的距离distance_to_waypoint = distance_vehicle(target_waypoint, transform)# 如果车辆距离当前路点的距离小于阈值,则更新到下一个路点if distance_to_waypoint < target_distance_threshold:waypoint_index += 1  # 移动到下一个路点if waypoint_index >= len(waypoints):arrive_target_point = Trueprint("npc_vehicle had arrive target point.")break  # 如果没有更多的路点,退出循环else:# 计算控制命令control = PID.run_step(target_speed, target_waypoint)# 应用控制命令npc_vehicle.apply_control(control)else:#设置NPC的初始速度CARLA.speed_con_by_pid(npc_vehicle,initspd_pid,target_speed)#判断是否可以cut incut_in_flag = CARLA.should_cut_in(npc_vehicle,ego_vehicle,dis_to_cut=8)# 判断是否达到模拟时长if time.time() - start_sim_time > 60:print("Simulation ended due to time limit.")break#到达目的地停车npc_vehicle.apply_control(carla.VehicleControl(throttle=0, steer=0, brake=-0.5))print("Control the target car to brake.")time.sleep(10)except Exception as e:print(f"An error occurred: {e}")finally:# 清理资源print("Cleaning up the simulation...")if ego_vehicle is not None:ego_vehicle.destroy()if npc_vehicle is not None:npc_vehicle.destroy()settings = CARLA.world.get_settings()settings.synchronous_mode = False  # 禁用同步模式settings.fixed_delta_seconds = None

效果

下述是变道规划简单的实现,轨迹跟踪效果比较一般,PID没有仔细调,紫色是车辆运行的点迹。

在这里插入图片描述
公众号:自动驾驶simulation

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/715185.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

力扣hot100题解(python版41-43题)

41、二叉树的层序遍历 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;[[3],[9,20],[15,7]]示例…

【C语言结构体】用户自定义类型--结构体,结构体传参,位段,联合体和枚举【图文详解】

欢迎来CILMY23的博客喔&#xff0c;本篇为【C语言结构体】用户自定义类型--结构体&#xff0c;结构体传参&#xff0c;位段&#xff0c;联合体和枚举【图文详解】&#xff0c;感谢观看&#xff0c;支持的可以给个一键三连&#xff0c;点赞关注收藏。 前言 上一篇&#xff08;ht…

GO—函数

Go 语言支持普通函数、匿名函数和闭包&#xff0c;从设计上对函数进行了优化和改进&#xff0c;让函数使用起来更加方便。 Go 语言的函数属于“一等公民”&#xff08;first-class&#xff09;&#xff0c;也就是说&#xff1a; 函数本身可以作为值进行传递。支持匿名函数和闭…

推荐6款SSH远程连接工具

1、Xshell 介绍&#xff1a; xshell是一个非常强大的安全终端模拟软件&#xff0c;它支持SSH1, SSH2, 以及Windows平台的TELNET 协议。Xshell可以在Windows界面下用来访问远端不同系统下的服务器&#xff0c;从而比较好的达到远程控制终端的目的。 业界最强大的SSH客户机 官…

数据分析-Pandas数据的直方图探查

数据分析-Pandas数据的直方图探查 数据分析和处理中&#xff0c;难免会遇到各种数据&#xff0c;那么数据呈现怎样的规律呢&#xff1f;不管金融数据&#xff0c;风控数据&#xff0c;营销数据等等&#xff0c;莫不如此。如何通过图示展示数据的规律&#xff1f; 数据表&…

农产品质量追溯系统—功能介绍(2)

储藏管理 储藏信息管理对需要储藏的农产品,记录储藏的相关信息,如储藏开始时间、存放仓库、操作人员、储藏原因等; 仓库信息管理物流管理 物流公司管理对相关的物流公司信息进行登记,以便于管理和追溯; 车辆管理

我的秋招数据分析岗面经分享(京东,美团,阿里,拼多多,vivo,滴滴)

节前&#xff0c;我们社群组织了一场技术&面试讨论会&#xff0c;邀请了一些互联网大厂同学、参加社招和校招面试的同学&#xff0c;针对新手如何入门数据分析、机器学习算法、该如何备战面试、面试常考点分享等热门话题进行了深入的讨论。 基于社群的讨论&#xff0c;今天…

OpenHarmony、HarmonyOS打开编辑 PDF 等操作的三方组件使用教程

项目场景: 随着数字化时代的发展,PDF 文档成为广泛应用于各行业的重要文件格式。为了提高OpenHarmony/HarmonyOS生态系统的功能性和用户体验,我们需要一款支持打开、编辑PDF文件的应用程序。 使用户能够轻松打开、浏览和编辑PDF文件。该应用将充分利用OpenHarmony/HarmonyO…

【NTN 卫星通信】卫星和无人机配合的应用场景

1 场景概述 卫星接入网是一种有潜力的技术&#xff0c;可以为地面覆盖差地区的用户提供无处不在的网络服务。然而&#xff0c;卫星覆盖范围对于位于考古或采矿地点内部/被茂密森林覆盖的村庄/山谷/靠近山丘或大型建筑物的用户可能很稀疏。因此&#xff0c;涉及卫星接入和无人驾…

HarmonyOS Full SDK的安装

OpenHarmony的应用开发工具HUAWEI DevEco Studio现在随着OpenHarmony版本发布而发布,只能在版本发布说明中下载,例如最新版本的OpenHarmony 4.0 Release。对应的需要下载DevEco Studio 4.0 Release,如下图。 图片 下载Full SDK主要有两种方式,一种是通过DevEco Studio下载…

教你用Fiddler捕获HTTPS请求

安装Fiddler 这里不特别说明了&#xff0c;网上搜索一大把&#xff0c;根据安装引导一步步安装即可。&#xff08;这里采用的是fiddler v4.6&#xff09; 配置Fiddler 1、打开fiddler配置Tools –>Telerik Fiddler Options。 2、打开HTTPS配置项&#xff0c;勾选“Captur…

ctf_show笔记篇(web入门---爆破)

爆破 21&#xff1a;直接bp抓包跑字典&#xff0c;需base64加密 22&#xff1a;可用工具跑也可用浏览器找还可以用网上做好的域名查找去找 23&#xff1a;此题需跑脚本已经附上自写脚本 最后跑出来六个答案一个一个尝试得到答案为3j import hashlibm "0123456789qwert…

C++_AVL树

目录 1、AVL的概念 2、平衡因子的调整概念 3、AVL树的插入 3.1 调整平衡因子代码实现 3.2 右旋操作 3.2 左旋操作 3.3 双旋-先右旋再左旋 3.4 双旋-先左旋再右旋 3.5 旋转操作的小结 4、AVL的验证与实现 结语 前言&#xff1a; 在C中&#xff0c;AVL树是在二叉搜索…

旧的Spring Security OAuth已停止维护,全面拥抱新解决方案Spring SAS

Spring Authorization Server 替换 Shiro 指引 背景 Spring 团队正式宣布 Spring Security OAuth 停止维护&#xff0c;该项目将不会再进行任何的迭代 目前 Spring 生态中的 OAuth2 授权服务器是 Spring Authorization Server 已经可以正式生产使用作为 SpringBoot 3.0 的最新…

如何使用naive 做一个模态框的方式

1.我的问题使用了一个table 表格&#xff0c;在表格中设置俩个按钮 最后做出来的效果 <template><div><h1>测试文件</h1><!-- 表格 --><n-data-table :columns"columns" :data"data" :pagination"pagination" …

Linux内核队列queue.h

文章目录 一、简介二、SLIST单向无尾链表2.1 介绍2.2 操作2.3 例子 三、STAILQ单向有尾链表四、LIST双向无尾链表五、TAILQ双向有尾链表六、CIRCLEQ循环链表七、queue源码参考 一、简介 queue.h是一个非常经典的文件&#xff0c;定义了一系列宏的操作&#xff0c;它定义了一系…

笔记72:关于IMU(惯性测量单元)传感器的作用【不涉及公式推导】

一、IMU传感器是什么&#xff1a; 惯性测量单元IMU&#xff08;Inertial Measurement Unit&#xff09;是一种使用【加速度计】和【陀螺仪】来测量【物体三轴姿态角&#xff08;空间姿态&#xff09;】的装置&#xff1b;IMU在坐标系的每个坐标轴上&#xff0c;均安装有1个陀螺…

Vue2:用node+express部署Vue项目

一、编译项目 命令 npm run build执行命令后&#xff0c;我们会在项目文件夹中看到如下生成的文件 二、部署Vue项目 接上一篇&#xff0c;nodeexpress编写轻量级服务 1、在demo中创建static文件夹 2、将dist目录中的文件放入static中 3、修改server.js文件 关键配置&…

DFA还原白盒AES密钥

本期内容是关于某app模拟登录的,涉及的知识点比较多,有unidbg补环境及辅助还原算法,ida中的md5以及白盒aes,fart脱壳,frida反调试 本章所有样本及资料均上传到了123云盘 llb资料官方版下载丨最新版下载丨绿色版下载丨APP下载-123云盘 目录 首先抓包 fart脱壳 加密位置定位…

win11安装nodejs

一、下载安装包 链接: https://pan.baidu.com/s/1_df8s1UlgNNaewWrWgI59A?pwdpsjm 提取码: psjm 二、安装步骤 1.双击安装包 2.Next> 3.勾选之后&#xff0c;Next> 4.点击Change&#xff0c;选择你要安装的路径&#xff0c;然后Next> 5.点击Install安装 二、…