基于 LLaMA 和 LangChain 实践本地 AI 知识库

有时候,我难免不由地感慨,真实的人类世界,本就是一个巨大的娱乐圈,即使是在英雄辈出的 IT 行业。数日前,Google 正式对外发布了 Gemini 1.5 Pro,一个建立在 Transformer 和 MoE 架构上的多模态模型。可惜,这个被 Google 寄予厚望的产品并未激起多少水花,因为就在同一天 OpenAI 发布了 Sora,一个支持从文字生成视频的模型,可谓是一时风光无二。有人说,OpenAI 站在 Google 的肩膀上,用 Google 的技术疯狂刷屏。此中曲直,远非我等外人所能预也。我们唯一能确定的事情是,通用人工智能,即:AGI(Artificial General Intelligence)的实现,正在以肉眼可见的速度被缩短,以前在科幻电影中看到的种种场景,或许会比我们想象中来得更快一些。不过,等待 AGI 来临前的黑夜注定是漫长而孤寂的。在此期间,我们继续来探索 AI 应用落地的最佳实践,即:在成功部署本地 AI 大模型后,如何通过外挂知识库的方式为其 “注入” 新的知识。

从 RAG & GPTs 开始

在上一期博客中,博主曾经有一个困惑,那就是当前阶段 AI 应用的最佳实践到底是什么?站在 2023 年的时间节点上,博主曾经以为未来属于提示词工程(Prompt Engineering),而站在 2024 年的时间节点上,博主认为 RAG & GPTs 在实践方面或许要略胜一筹。在过去的一年里,我们陆陆续续看到像 Prompt Heroes、PromptBase、AI Short…等等这样的提示词网站出现,甚至提示词可以像商品一样进行交易。与此同时,随着 OpenAI GPT Store 的发布,我们仿佛可以看到一种 AI 应用商店的雏形。什么是 GPTs 呢?通常是指可以让使用者量身定做 AI 助理的工具。譬如,它允许用户上传资料来丰富 ChatGPT 的知识库,允许用户使用个性化的提示词来指导 ChatGPT 的行为,允许用户整合各项技能(搜索引擎、Web API、Function Calling)…等等。我们在上一期博客中提到人工智能的 “安卓时刻”,一个重要的契机是目前产生了类似应用商店的 GPT Store,如下图所示:

在这里插入图片描述

如果你觉得 OpenAI 的 GPT Store 离我们还稍微有点距离的话,不妨了解一下 FastGPT 这个项目,它以更加直观的方式展示了一个 GPTs 是如何被创造出来的。如图所示,博主利用我的博客作为知识库创建了一个博客助手,而这一切只需要选模型、编写提示词、上传资料三个步骤即可。感兴趣的朋友可以从 这里 进行体验:

在这里插入图片描述

由此,我们就可以得出一个结论,目前 AI 应用落地主要还是围绕大模型微调(Fine Tuning)、提示词工程(Prompt Engineering) 以及知识增强展开,并且 GPTs 里依然有提示词参与,两者并不冲突。考虑到,大模型微调这条线存在一定的门槛,我们暂且将其放在一旁。此时,提示词工程和知识增强就成为了 AI 应用落地的关键。知识增强,专业术语为检索增强生成,即:Retrieval-Augmented GenerationRAG,其基本思路就是将大语言模型和知识库结合起来,通过外挂知识库的方式来增强大模型的生成能力。比如微软的 New Bing 是 GPT-4 + 搜索引擎的方案,而更一般的方案则是 LLM + 向量数据库的思路,下图展示了 RAG 运作的基本原理:

在这里插入图片描述

从这个角度来看,LangChain 及其衍生项目 AutoChain、Embedchain,甚至 FastGPT 等项目解决的本质都是 RAGAgent 的问题。其中,Agent 不在本文的讨论范围内,这里博主不打算详细展开。接下来的内容,博主会按照这个思路进行阐述,并且以 LangChain 为例来对其中的细节进行说明。

知识库构建

如你所见,RAG 由 LLM 和 知识库两部分组成。首先,我们来构建知识库,通常,这个过程可以划分为下面四个步骤,即:载入文档(Loader)、拆分文本(Splitter)、文本向量化(Embeddings)、向量存储(VectorStore)。

在这里插入图片描述

Loader

你会注意到,博主在文章中加粗显示了这四个步骤的英文描述,事实上,这代表了 LangChain 中的一部分概念,以 Loader 为例,它负责从各种文档中载入内容,下面展示了从文本文件、PDF 文件以及网页中载入内容:

from langchain_community.document_loaders import DirectoryLoader, TextLoader, PyPDFLoader, WebBaseLoader# TextLoader
# 指定编码
loader = TextLoader("./input/金庸武侠小说全集/射雕英雄传.txt", encoding="utf-8")
loader.load()
# 自动推断
# python -m pip install chardet
loader = TextLoader("./input/金庸武侠小说全集/射雕英雄传.txt", autodetect_encoding=True)
loader.load()# PyPDFLoader
# python -m pip install pypdf
loader = PyPDFLoader("./input/文学作品/追风筝的人.pdf")
loader.load()# WebBaseLoader
# python -m pip install beautifulsoup4
loader = WebBaseLoader(web_paths=('https://blog.yuanpei.me',), bs_kwargs={})
loader.load()

当然,现实中通常会有很多文档,此时,我们可以使用 DirectoryLoader 来一次性载入多个文档:

from langchain_community.document_loaders import DirectoryLoaderloader = DirectoryLoader("./posts/", glob="*.md", loader_kwargs={}, show_progress=True, silent_errors=True)

默认情况下,DirectoryLoad

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/713926.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

S2---FPGA-A7板级原理图硬件实战

视频链接 FPGA-A7板级系统硬件实战01_哔哩哔哩_bilibili FPGA-A7板级原理图硬件实战 基于XC7A100TFGG484的FPGA硬件设计流程图 A7核心板,是基于XILINX公司的ARTIX-7系列100T的XC7A100T,2FGG484I这款芯片开发的高性能核心板,具有高速,高带宽&a…

Android 签名机制

V1是内部文件单个签 但是增加apk文件目录下面随意增加文件并不会有影响,它只关心meta-info文件 mf汇总清单的各个文件sha256 V2 整个APK文件,按文件进行hash 那么便不能随便在这里面增加文件了,增加了签名分块(不然签名信息存哪里)这里涉及一个文件概念 …

如何修炼成“神医”——《OceanBase诊断系列》之一

本系列是基于OcenaBase 开发工程师在工作中的一些诊断经验,也欢迎大家分享相关经验。 1. 关于神医的故事 扁鹊,中国古代第一个被正史记载的医生,他的成才之路非常传奇。年轻时,扁鹊是一家客栈的主管。有一位名叫长桑君的客人来到…

性能优化篇(二) 静态合批步骤与所有注意事项\游戏运行时使用代码启动静态合批

静态合批步骤: 1.开启Project Settings —>Player–>Other Setting里勾选Static Batching选项(一般情况下unity都是默认勾选状态) 2.勾选需要合批的静态物体上的Batching Static项,勾选后此物体下的所有子物体都默认参与静态合批(勾选后物体不能进行移动/旋转/缩放操作,…

02-设计概述

上一篇:01-导言 本章重点讨论 JNI 中的主要设计问题。本节中的大多数设计问题都与本地方法有关。调用 API 的设计将在第 5 章:调用 API 中介绍。 2.1 JNI 接口函数和指针 本地代码通过调用 JNI 函数来访问 Java 虚拟机功能。JNI 函数可通过接口指针使用…

LeetCode383. 赎金信(C++)

LeetCode383. 赎金信 题目链接代码 题目链接 https://leetcode.cn/problems/ransom-note/description/ 代码 class Solution { public:bool canConstruct(string ransomNote, string magazine) {int record[26] {0};if(ransomNote.size() > magazine.size()) return fa…

多层感知器(神经网络)与激活函数

单个神经元(二分类) 多个神经元(多分类) 多层感知器 多层感知器,他是一种深度学习模型,通过多层神经元的连接和激活来解决非线性问题。 激活函数 激活函数的种类包括relu,sigmoid和tanh等 …

批量检测微信小程序是否封禁接口源码

<?php // 要检测的 appid 列表 $appids array(appid1, appid2, appid3); // 使用实际的 appid // 循环调用接口检测小程序状态 foreach ($appids as $appid) { $url https://yan.changxunwangluo.cn/xcx/check_mini_program.php?appid . urlencode($appid); $…

敏捷开发模型:一种灵活、协作和持续的软件开发方法

敏捷开发模型&#xff1a;一种灵活、协作和持续的软件开发方法 引言 在软件开发领域&#xff0c;随着市场需求的不断变化和技术的迅速发展&#xff0c;传统的瀑布模型逐渐暴露出其局限性。为了应对这些挑战&#xff0c;敏捷开发模型应运而生。敏捷开发模型强调灵活、协作和持…

【ArcPy】简化ArcGISPro默认Python环境体量

参考文献 安装 ArcPy—ArcGIS Pro | 文档

[数据集][目标检测]鸡蛋破蛋数据集VOC+YOLO格式792张2类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;792 标注数量(xml文件个数)&#xff1a;792 标注数量(txt文件个数)&#xff1a;792 标注类别…

同源不同页面之间的通信,SharedWorker使用

同源不同页面之间的通信&#xff0c;SharedWorker使用 描述实现结果 描述 同源不同页面之间的通信&#xff0c;使用SharedWorker&#xff0c;或者使用全局方法通信&#xff0c;这里使用SharedWorker来实现 mdn地址&#xff1a;https://developer.mozilla.org/zh-CN/docs/Web/A…

Odoo迈入开源第一低代码开发平台的重要里程碑

Odoo17的正式发布已经过去好几个月了&#xff0c;通过一段时间的运用&#xff0c;最大的感触就是&#xff0c;Odoo会成为企业管理软件低代码开发平台的重要一员&#xff0c;而V17则会成为这个过程中具有里程碑意义的版本。 时隔四个月&#xff0c;让我们回头来看看Odoo17带来的…

基YOLOV5实现的AI智能盒子

基于yolov5实现的AI智能盒子框架 开发背景技术实现产品效果源码预览功能介绍 2021-2023是沉淀的几年&#xff0c;经济不景气&#xff0c;各行各业都不太好混&#xff0c;所以这几年也没有太多心思花在csdn上为各大网友写一些技术文章&#xff0c;2024年初&#xff0c;也算是给自…

光栅化算法

多数计算机图形图像&#xff0c;是通过光栅显像显示给用户的&#xff0c;这种系统将图像作为像素阵列进行显示&#xff0c;像素&#xff08;pixel&#xff09;即图像元素&#xff08;picture element&#xff09;的简称。这些像素采用RGB颜色空间。本文讨论光栅显像的基本原理&…

蓝牙耳机哪个好用性价比高?2024热销蓝牙耳机大测评!选购不焦虑

​近年来&#xff0c;蓝牙耳机已经成为了一个非常热门的选择&#xff0c;不仅因为它们小巧便捷&#xff0c;还因为它们的防水性能、音质和佩戴体验已经逐渐超越了有线耳机。随着越来越多的品牌加入蓝牙耳机的市场竞争&#xff0c;各种类型的蓝牙耳机层出不穷。特别是对于运动爱…

2024年全国乙卷高考理科数学备考:十年选择题真题和解析

今天距离2024年高考还有三个多月的时间&#xff0c;今天我们来看一下2014~2023年全国乙卷高考理科数学的选择题&#xff0c;从过去十年的真题中随机抽取5道题&#xff0c;并且提供解析。后附六分成长独家制作的在线练习集&#xff0c;科学、高效地反复刷这些真题&#xff0c;吃…

GEE数据集——GLC_FCS30D - 全球 30 米土地覆被变化数据集(1985-2022 年)

GLC_FCS30D - 全球 30 米土地覆被变化数据集&#xff08;1985-2022 年&#xff09; 注 本数据集是正在提交的论文的一部分&#xff0c;因此没有引用和 DOI 信息。请在使用本数据集时注意这一点。 GLC_FCS30D 数据集是全球土地覆被监测领域的一项开创性进展&#xff0c;它以 30…

SpringBoot 整合WebService

文章目录 WebService1.简单介绍WebService1.1. 类型1.2. 架构1.3. 主要特点1.4. 使用场景1.5. Web服务标准和技术 2.案例-WebServiceDemo2.1.引入配置文件2.2.创建接口2.3.创建接口实现类2.4.创建WebService配置类2.5.测试 WebService Web服务&#xff08;Web Services&#xf…

2024年腾讯云优惠券/代金券领取三个方法整理(收藏级)

腾讯云代金券领取渠道有哪些&#xff1f;腾讯云官网可以领取、官方媒体账号可以领取代金券、完成任务可以领取代金券&#xff0c;大家也可以在腾讯云百科蹲守代金券&#xff0c;因为腾讯云代金券领取渠道比较分散&#xff0c;腾讯云百科txybk.com专注汇总优惠代金券领取页面&am…