Python爬虫+数据可视化:分析唯品会商品数据

目录

  • 前言
  • 数据来源分析
      • 1. 明确需求
      • 2. 抓包分析:通过浏览器自带工具: 开发者工具
  • 代码实现步骤: 发送请求 -> 获取数据 -> 解析数据 -> 保存数据
      • 发送请求
      • 解析数据
      • 保存数据
  • 数据可视化
      • 先读取数据
      • 泳衣商品性别占比
      • 商品品牌分布占比
      • 各大品牌商品售价平均价格
      • 各大品牌商品原价平均价格
      • 唯品会泳衣商品售价价格区间

前言

唯品会是中国领先的在线特卖会电商平台之一,它以“品牌特卖会”的模式运营,为会员提供品牌折扣商品。唯品会的商品包括服装、鞋类、箱包、美妆、家居、母婴、食品等各类品牌产品。

这就是今天的受害者,我们要拿取上面的泳衣数据,然后可以做些数据可视化

数据来源分析

1. 明确需求

  • 明确采集网站以及数据
    网址: https://category.vip.com/suggest.php?keyword=%E6%B3%B3%E8%A1%A3&ff=235|12|1|1
    数据: 商品信息

2. 抓包分析:通过浏览器自带工具: 开发者工具

  • 打开开发者工具: F12 / 右键点击检查选择network
  • 刷新网页: 让网页数据重新加载一遍
  • 搜索关键字: 搜索数据在哪里
    找到数据包: 50条商品数据信息
    整页数据内容: 120条 --> 分成三个数据包
    1. 前50条数据 --> 前50个商品ID
    2. 中50条数据 --> 中50个商品ID
    3. 后20条数据 --> 后20个商品ID

已知: 数据分为三组 --> 对比三组数据包请求参数变化规律
请求参数变化规律: 商品ID
分析找一下 是否存在一个数据包, 包含所有商品ID

如果想要获取商品信息 --> 先获取所有商品ID --> ID存在数据包

代码实现步骤: 发送请求 -> 获取数据 -> 解析数据 -> 保存数据

发送请求

我们定义了要爬取的URL地址,并设置了User-Agent请求头,以模拟浏览器发送请求。
使用requests.get方法发送GET请求,并将响应保存在response变量中。

headers = {# 防盗链 告诉服务器请求链接地址从哪里跳转过来'Referer': 'https://category.vip.com/',# 用户代理, 表示浏览器基本身份信息'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)'
}
# 请求链接
url = 'https://mapi.vip.com/vips-mobile/rest/shopping/pc/search/product/rank'
data = {# 回调函数# 'callback': 'getMerchandiseIds','app_name': 'shop_pc','app_version': '4.0','warehouse': 'VIP_HZ','fdc_area_id': '104103101','client': 'pc','mobile_platform': '1','province_id': '104103','api_key': '70f71280d5d547b2a7bb370a529aeea1','user_id': '','mars_cid': '1689245318776_e2b4a7b51f99b3dd6a4e6d356e364148','wap_consumer': 'a','standby_id': 'nature','keyword': '泳衣','lv3CatIds': '','lv2CatIds': '','lv1CatIds': '','brandStoreSns': '','props': '','priceMin': '','priceMax': '','vipService': '','sort': '0','pageOffset': '0','channelId': '1','gPlatform': 'PC','batchSize': '120','_': '1689250387620',
}
# 发送请求 --> <Response [200]> 响应对象
response = requests.get(url=url, params=data, headers=headers)

解析数据

然后,我们定义了起始标签和结束标签,通过循环的方式遍历文本,并提取每个商品的名称和价格。

# 商品ID -> 120个
products = [i['pid'] for i in response.json()['data']['products']]
# 把120个商品ID 分组 --> 切片 起始:0 结束:50 步长:1
# 列表合并成字符串
product_id_1 = ','.join(products[:50]) #  提取前50个商品ID 0-49
product_id_2 = ','.join(products[50:100]) #  提取中50个商品ID 50-99
product_id_3 = ','.join(products[100:]) #  提取后20个商品ID 100到最后
product_id_list = [product_id_1, product_id_2, product_id_3]for product_id in product_id_list:# 请求链接link = 'https://mapi.vip.com/vips-mobile/rest/shopping/pc/product/module/list/v2'# 请求参数params = {# 'callback': 'getMerchandiseDroplets2','app_name': 'shop_pc','app_version': '4.0','warehouse': 'VIP_HZ','fdc_area_id': '104103101','client': 'pc','mobile_platform': '1','province_id': '104103','api_key': '70f71280d5d547b2a7bb370a529aeea1','user_id': '','mars_cid': '1689245318776_e2b4a7b51f99b3dd6a4e6d356e364148','wap_consumer': 'a','productIds': product_id,'scene': 'search','standby_id': 'nature','extParams': '{"stdSizeVids":"","preheatTipsVer":"3","couponVer":"v2","exclusivePrice":"1","iconSpec":"2x","ic2label":1,"superHot":1,"bigBrand":"1"}','context': '','_': '1689250387628',}# 发送请求json_data = requests.get(url=link, params=params, headers=headers).json()for index in json_data['data']['products']:# 商品信息attr = ','.join([j['value'] for j in index['attrs']])# 创建字典dit = {'标题': index['title'],'品牌': index['brandShowName'],'原价': index['price']['marketPrice'],'售价': index['price']['salePrice'],'折扣': index['price']['mixPriceLabel'],'商品信息': attr,'详情页': f'https://detail.vip.com/detail-{index["brandId"]}-{index["productId"]}.html',}csv_writer.writerow(dit)print(dit)

保存数据

然后,我们使用open函数创建一个CSV文件,并指定文件名、写入模式、编码方式等参数。然后使用csv.DictWriter初始化一个写入器对象,并指定表头。

我们使用writer.writeheader()来写入CSV文件的表头,然后遍历items列表,使用writer.writerow()将每个商品的数据写入CSV文件中。

f = open('商品.csv', mode='a', encoding='utf-8', newline='')
csv_writer = csv.DictWriter(f, fieldnames=['标题','品牌','原价','售价','折扣','商品信息','详情页',
])
csv_writer.writeheader()

数据可视化

先读取数据

df = pd.read_csv('商品.csv')
df.head()

泳衣商品性别占比

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Fakerc = (Bar().add_xaxis(sex_type).add_yaxis("", sex_num).set_global_opts(title_opts=opts.TitleOpts(title="泳衣商品性别占比", subtitle=""),brush_opts=opts.BrushOpts(),)
)
c.load_javascript()

from pyecharts import options as opts
from pyecharts.charts import Piec = (Pie().add("", [list(z) for z in zip(sex_type, sex_num)]).set_global_opts(title_opts=opts.TitleOpts(title="泳衣商品性别占比")).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
)
c.render_notebook()

商品品牌分布占比

shop_num = df['品牌'].value_counts().to_list()
shop_type = df['品牌'].value_counts().index.to_list()
c = (Pie().add("",[list(z)for z in zip(shop_type, shop_num)],center=["40%", "50%"],).set_global_opts(title_opts=opts.TitleOpts(title="商品品牌分布占比"),legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
)
c.render_notebook()

各大品牌商品售价平均价格

# 按城市分组并计算平均薪资
avg_salary = df.groupby('品牌')['售价'].mean()
ShopType = avg_salary.index.tolist()
ShopNum = [int(a) for a in avg_salary.values.tolist()]
# 创建柱状图实例
c = (Bar().add_xaxis(ShopType).add_yaxis("", ShopNum).set_global_opts(title_opts=opts.TitleOpts(title="各大品牌商品售价平均价格"),visualmap_opts=opts.VisualMapOpts(dimension=1,pos_right="5%",max_=30,is_inverse=True,),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45))  # 设置X轴标签旋转角度为45度).set_series_opts(label_opts=opts.LabelOpts(is_show=False),markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="min", name="最小值"),opts.MarkLineItem(type_="max", name="最大值"),opts.MarkLineItem(type_="average", name="平均值"),]),)
)c.render_notebook()

各大品牌商品原价平均价格

# 按城市分组并计算平均薪资
avg_salary = df.groupby('品牌')['原价'].mean()
ShopType_1 = avg_salary.index.tolist()
ShopNum_1 = [int(a) for a in avg_salary.values.tolist()]
# 创建柱状图实例
c = (Bar().add_xaxis(ShopType_1).add_yaxis("", ShopNum_1).set_global_opts(title_opts=opts.TitleOpts(title="各大品牌商品原价平均价格"),visualmap_opts=opts.VisualMapOpts(dimension=1,pos_right="5%",max_=30,is_inverse=True,),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45))  # 设置X轴标签旋转角度为45度).set_series_opts(label_opts=opts.LabelOpts(is_show=False),markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="min", name="最小值"),opts.MarkLineItem(type_="max", name="最大值"),opts.MarkLineItem(type_="average", name="平均值"),]),)
)c.render_notebook()

唯品会泳衣商品售价价格区间

pie1 = (Pie(init_opts=opts.InitOpts(theme='dark',width='1000px',height='600px')).add('', datas_pair_2, radius=['35%', '60%']).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%")).set_global_opts(title_opts=opts.TitleOpts(title="唯品会泳衣商品\n\n售价价格区间", pos_left='center', pos_top='center',title_textstyle_opts=opts.TextStyleOpts(color='#F0F8FF', font_size=20, font_weight='bold'),)).set_colors(['#EF9050', '#3B7BA9', '#6FB27C', '#FFAF34', '#D8BFD8', '#00BFFF', '#7FFFAA'])
)
pie1.render_notebook() 

👇问题解答 · 源码获取 · 技术交流 · 抱团学习请联系👇

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/7128.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LINUX中的myaql(一)安装

目录 前言 一、概述 二、数据库类型 三、数据库模型 四、MYSQL的安装 &#xff08;一&#xff09;yum安装MYSQL &#xff08;二&#xff09;rpm安装MYSQL 五、MYSQL本地登录 rpm安装MYSQL本地登录 六、重置密码 总结 前言 MySQL是一种常用的开源关系型数据库管理系统&#xff…

MATLAB与ROS联合仿真——ROS环境搭建及相关准备工作(下)

本篇文章主要介绍在安装完ROS后&#xff0c;在进行MATLAB与ROS联合仿真之前&#xff0c;需要进行的一些环境搭建以及准备工作&#xff0c;主要分为 创建ROS工作空间及功能包、必备功能包安装、安装Gazebo11、导入实验功能包至工作空间、安装Visual_Studio_Code(选做)、常用便捷…

Mysql错误日志、通用查询日志、二进制日志和慢日志的介绍和查看

一.日志 1.日志和备份的必要性 日志刷新 2.mysql的日志类型 &#xff08;1&#xff09;错误日志 查看当前错误日志和是否记录警告设置 &#xff08;2&#xff09;通用查询日志 查看通用查询日志的设置 &#xff08;3&#xff09;二进制日志 查看二进制文件的设置&…

最小二乘拟合椭圆

目录 1.拟合椭圆2.示例代码 爬虫网站自重。 1.拟合椭圆 二次曲线的一般方程为&#xff1a; A x 2 B x y C y 2 D x E y F 0 Ax^2BxyCy^2DxEyF0 Ax2BxyCy2DxEyF0 令&#xff1a; Δ B 2 − 4 A C Δ B^2-4AC ΔB2−4AC 那么&#xff0c;当 Δ > 0 Δ >0 Δ>0…

js基础-练习三

九九乘法表&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthsc, initial-scale1.0"><title>九九乘法表</title><style&g…

【uniapp学习之】uni-forms必填项校验

代码块 <uni-forms ref"baseForm" :modelValue"baseFormData" label-widthauto :rules"rules"><uni-forms-item label"企业名称" required name"principalName"><uni-easyinput v-model"baseFormData.…

springboot mybatis-plus 多数据源配置(HikariCP)

1.导入依赖jar <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-jdbc</artifactId></dependency><dependency><groupId>org.postgresql</groupId><artifactId>postgres…

【JVM】浅看JVM的运行流程和垃圾回收

1.JVM是什么 JVM&#xff08; Java Virtual Machine&#xff09;就是Java虚拟机。 Java的程序都运行在JVM中。 2.JVM的运行流程 JVM的执行流程&#xff1a; 程序在执行之前先要把java代码转换成字节码&#xff08;class文件&#xff09;&#xff0c;JVM 首先需要把字节码通过…

金融领域:产业链知识图谱包括上市公司、行业和产品共3类实体,构建并形成了一个节点10w+,关系边16w的十万级别产业链图谱

项目设计集合&#xff08;人工智能方向&#xff09;&#xff1a;助力新人快速实战掌握技能、自主完成项目设计升级&#xff0c;提升自身的硬实力&#xff08;不仅限NLP、知识图谱、计算机视觉等领域&#xff09;&#xff1a;汇总有意义的项目设计集合&#xff0c;助力新人快速实…

前端 | ( 十三)CSS3简介及基本语法(下)| 伸缩盒模型 | 尚硅谷前端html+css零基础教程2023最新

学习来源&#xff1a;尚硅谷前端htmlcss零基础教程&#xff0c;2023最新前端开发html5css3视频 系列笔记&#xff1a; 【HTML4】&#xff08;一&#xff09;前端简介【HTML4】&#xff08;二&#xff09;各种各样的常用标签【HTML4】&#xff08;三&#xff09;表单及HTML4收尾…

微服务保护——Sentinel【实战篇二】

一、线程隔离 &#x1f349; 线程隔离有两种方式实现&#xff1a; 线程池隔离信号量隔离&#xff08;Sentinel默认采用&#xff09; 线程隔离&#xff08;舱壁模式&#xff09;&#x1f95d; 在添加限流规则时&#xff0c;可以选择两种阈值类型&#xff1a; QPS&#xff1a;…

SpringBoot-4

Spring Boot 使用 slf4j 日志 在开发中经常使用 System.out.println()来打印一些信息&#xff0c;但是这样不好&#xff0c;因为大量的使用 System.out 会增加资源的消耗。实际项目中使用的是 slf4j 的 logback 来输出日志&#xff0c;效率挺高的&#xff0c;Spring Boot 提供…

如何用3D格式转换工具HOOPS Exchange读取颜色和材料信息?

作为应用程序开发人员&#xff0c;非常希望导入部件的图形表示与它们在创作软件中的外观尽可能接近。外观可以在每个B-Rep面的基础上指定&#xff0c;而且&#xff0c;通过装配层次结构的特定路径可以在视觉外观上赋予父/子覆盖。HOOPS ExchangeHOOPS Exchange可捕获有关来自各…

新零售数字化商业模式如何建立?新零售数字化营销怎么做?

随着零售行业增速放缓、用户消费结构升级&#xff0c;企业需要需求新的价值增长点进行转型升级&#xff0c;从而为消费者提供更为多元化的消费需求、提升自己的消费体验。在大数据、物联网、5G及区块链等技术兴起的背景下&#xff0c;数字化新零售系统应运而生。 开利网络认为&…

让GPT人工智能变身常用工具-上

1.密码生成器:GPT为您创建安全密码 想象GPT作为您的个人密码生成器,负责从头到尾为您创建复杂且安全的密码。您只需要告诉他您的密码需求,比如密码的长度,是否包含大写字母、小写字母、数字或特殊字符,他会立即为您生成一个复杂但经过深度设计的密码。 例子: 我希望您…

Python 单继承、多继承、@property、异常、文件操作、线程与进程、进程间通信、TCP框架 7.24

单继承 class luban:def __init__(self, name):self.name nameself.skill "摸鱼飞弹"self.damageLevel 20def attack(self):print("{} 使用了技能{} &#xff0c;给敌方带来了极大的困扰\n""并有{}% 的机会造成一击必杀的效果".format(self.…

Docker介绍以及实战教程

Docker简介 Docker为什么出现 从事软件开发的朋友&#xff0c;可能经常会碰到以下场景&#xff1a;运维&#xff1a;你这程序有Bug啊&#xff0c;怎么跑不起来啊&#xff01;开发&#xff1a;我机子上能跑啊&#xff0c;你会不会用啊究其原因还是开发环境与生产环境不同造成的…

【java安全】RMI

文章目录 【java安全】RMI前言RMI的组成RMI实现Server0x01 编写一个远程接口0x02 实现该远程接口0x03 Registry注册远程对象 Client 小疑问RMI攻击 【java安全】RMI 前言 RMI全称为&#xff1a;Remote Method Invocation 远程方法调用&#xff0c;是java独立的一种机制。 RM…

SoapUI、Jmeter、Postman三种接口测试工具的比较分析

前段时间忙于接口测试&#xff0c;也看了几款接口测试工具&#xff0c;简单从几个角度做了个比较&#xff0c;拿出来与诸位分享一下。本文从多个方面对接口测试的三款常用工具进行比较分析&#xff0c;以便于在特定的情况下选择最合适的工具&#xff0c;或者使用自己编写的工具…

12.(开发工具篇vscode+git)vscode 不能识别npm命令

1&#xff1a;vscode 不能识别npm命令 问题描述&#xff1a; 解决方式&#xff1a; &#xff08;1&#xff09;右击VSCode图标&#xff0c;选择以管理员身份运行&#xff1b; &#xff08;2&#xff09;在终端中执行get-ExecutionPolicy&#xff0c;显示Restricted&#xff…