Pytorch个人学习记录总结 05

目录

神经网络的基本骨架

卷积操作 torch.nn.functional.conv2d


神经网络的基本骨架

搭建Neural Network骨架主要用到的包是torch.nn,官方文档网址:torch.nn — PyTorch 2.0 documentation,其中torch.nn.Module很重要,是所有所有神经网络模块的基类(即自己搭建的网络必须继承torch.nn.Module基类),官方文档地址:Module — PyTorch 2.0 documentation。

搭建模型时,集成torch.nn.Module后必须要重写两个函数:__init__()forward()

import torch.nn as nn
import torch.nn.functional as Fclass Model(nn.Module):def __init__(self):super().__init__()self.conv1 = nn.Conv2d(1, 20, 5)self.conv2 = nn.Conv2d(20, 20, 5)def forward(self, x):x = F.relu(self.conv1(x))return F.relu(self.conv2(x))

卷积操作 torch.nn.functional.conv2d

torch.nn包含了torch.nn.functional,两者中都包含了Conv、Pool等层操作,且用法和效果都是一样的(但是具体的输入参数有所不同)。用的torch.nn.functional.conv2d举例,但其实在以后使用中,torch.nn.Conv2d更常用。

torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) → Tensor
CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode=‘zeros’, device=None, dtype=None)

torch.nn.functional.conv2d中的Input、weight(也就是kernel)都必须是4维张量,每维的含义是[batch_size, C, H, W],必要的时候,可用reshape()或unsqueeze()对张量进行扩维。
(1) reshape是对改变tensor的形状,各维度的乘积与原本保持一致。
(2) unsqueeze是在指定维度上扩充一个1维。
 

import torchx = torch.arange(15)
x2 = torch.reshape(x, [3, 5])	# 用list或tuple表示形状都可以
y1_reshape = torch.reshape(x, [1, 1, 3, 5])  # reshape:只要所有维度乘在一起的积不变,就可以任意扩充多个维度
y2_unsqueeze = torch.unsqueeze(x2, 2)	# unsequeeze:第二个参数的数据类型是int,所以只能在指定维度上扩充一个1维(升维)
c_squeeze = torch.squeeze(y1_reshape)	# sequeeze:只传入一个tensor参数,然后将tensor的所有1维删掉(降维)print('x.shape:{}'.format(x.shape))
print('x2.shape:{}'.format(x2.shape))
print('y1_reshape.shape:{}'.format(y1_reshape.shape))
print('y2_unsqueeze.shape:{}'.format(y2_unsqueeze.shape))
print('c_squeeze.shape:{}'.format(c_squeeze.shape))
import torch
import torch.nn.functional as Finput = torch.tensor([[1, 2, 0, 3, 1],[0, 1, 2, 3, 1],[1, 2, 1, 0, 0],[5, 2, 3, 1, 1],[2, 1, 0, 1, 1]])
kernel = torch.tensor([[1, 2, 1],[0, 1, 0],[2, 1, 0]])print(input.shape)
print(kernel.shape)# input、kernel都扩充到4维
input = torch.reshape(input, (1, 1, 5, 5))
kernel = torch.reshape(kernel, (1, 1, 3, 3))out = F.conv2d(input, kernel, stride=1)
print('out={}'.format(out))out2 = F.conv2d(input, kernel, stride=2)
print('out2={}'.format(out2))out3 = F.conv2d(input, kernel, stride=1, padding=1)
print('out3={}'.format(out3))


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/7117.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

springboot mybatis-plus 多数据源配置(HikariCP)

1.导入依赖jar <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-jdbc</artifactId></dependency><dependency><groupId>org.postgresql</groupId><artifactId>postgres…

【JVM】浅看JVM的运行流程和垃圾回收

1.JVM是什么 JVM&#xff08; Java Virtual Machine&#xff09;就是Java虚拟机。 Java的程序都运行在JVM中。 2.JVM的运行流程 JVM的执行流程&#xff1a; 程序在执行之前先要把java代码转换成字节码&#xff08;class文件&#xff09;&#xff0c;JVM 首先需要把字节码通过…

springboot中logback日志配置

springboot中logback日志配置 前言默认配置logback-spring.xml详细配置 前言 Spring Boot使用Apache的Commons Logging作为内部的日志框架&#xff0c;其仅仅是一个日志接口&#xff0c;在实际应用中需要为该接口来指定相应的日志实现。 Spring Boot从1.4版本开始内置的日志框…

程序员面试系列,kafka常见面试题

原文链接 Kafka是什么&#xff1f;它的主要作用是什么&#xff1f;什么是Kafka的主题&#xff08;Topic&#xff09;和分区&#xff08;Partition&#xff09;&#xff1f;Kafka中的消息是如何被生产者发送和消费者接收的&#xff1f;Kafka中的分区有什么作用&#xff1f;为什…

聊聊Linq中.AsEnumerable(), AsQueryable() ,.ToList(),的区别和用法

聊聊Linq中.AsEnumerable(), AsQueryable() ,.ToList(),的区别和用法 当使用LINQ查询数据时&#xff0c;我们常常会面临选择使用.AsEnumerable(), .AsQueryable(), 和 .ToList()方法的情况。这些方法在使用时有不同的效果和影响&#xff0c;需要根据具体场景来选择合适的方法。…

springboot热加载spring-boot-devtools:

springboot热加载 基于idea开发springboot项目使用热加载 pom依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-devtools</artifactId><scope>runtime</scope><optional>true</op…

金融领域:产业链知识图谱包括上市公司、行业和产品共3类实体,构建并形成了一个节点10w+,关系边16w的十万级别产业链图谱

项目设计集合&#xff08;人工智能方向&#xff09;&#xff1a;助力新人快速实战掌握技能、自主完成项目设计升级&#xff0c;提升自身的硬实力&#xff08;不仅限NLP、知识图谱、计算机视觉等领域&#xff09;&#xff1a;汇总有意义的项目设计集合&#xff0c;助力新人快速实…

前端 | ( 十三)CSS3简介及基本语法(下)| 伸缩盒模型 | 尚硅谷前端html+css零基础教程2023最新

学习来源&#xff1a;尚硅谷前端htmlcss零基础教程&#xff0c;2023最新前端开发html5css3视频 系列笔记&#xff1a; 【HTML4】&#xff08;一&#xff09;前端简介【HTML4】&#xff08;二&#xff09;各种各样的常用标签【HTML4】&#xff08;三&#xff09;表单及HTML4收尾…

Go 语言 值类型和引用类型

Go 语言 值类型和引用类型 值类型&#xff1a; 概述&#xff1a; 值类型的人变量直接存储其值&#xff0c;他们通常在栈上分配内存。当把一个值类型的变量赋值给另外一个变量、作为函数参数传递或从函数返回时&#xff0c;进行值的复制。因此每个变量都有自己独立的存储&…

Flutter 自定义 虚线 分割线

学习使用Flutter 进行 虚线 自定义控件 练习 // 自定义虚线 &#xff08;默认是垂直方向&#xff09; class DashedLind extends StatelessWidget {final Axis axis; // 虚线方向final double dashedWidth; // 根据虚线的方向确定自己虚线的宽度final double dashedHeight; //…

实训笔记7.24

实训笔记7.24 7.24笔记一、Hadoop中MapReduce框架的使用原理和流程1.1 涉及到一些框架核心组件1.1.1 InputFotmat1.1.2 MapTask1.1. 3Partitioner1.1.4 WritableComparable1.1.5 Combiner&#xff08;可选&#xff09;1.1.6 WritableComparator(GroupingComparator)1.1.7 Reduc…

c++ 之 dynamic_pointer_cast

/* * dynamic_pointer_cast */ 描述 (Description) 它返回一个正确类型的sp副本&#xff0c;其存储的指针从U *动态地转换为T *。 声明 (Declaration) 以下是std :: dynamic_pointer_cast的声明。 template <class T, class U> shar…

微服务保护——Sentinel【实战篇二】

一、线程隔离 &#x1f349; 线程隔离有两种方式实现&#xff1a; 线程池隔离信号量隔离&#xff08;Sentinel默认采用&#xff09; 线程隔离&#xff08;舱壁模式&#xff09;&#x1f95d; 在添加限流规则时&#xff0c;可以选择两种阈值类型&#xff1a; QPS&#xff1a;…

SpringBoot-4

Spring Boot 使用 slf4j 日志 在开发中经常使用 System.out.println()来打印一些信息&#xff0c;但是这样不好&#xff0c;因为大量的使用 System.out 会增加资源的消耗。实际项目中使用的是 slf4j 的 logback 来输出日志&#xff0c;效率挺高的&#xff0c;Spring Boot 提供…

NLP 中的pad/padding操作代码分析

今天分析一下NLP中的pad操作代码&#xff1a; 该方法的作用是将输入的序列列表seqs进行填充操作&#xff0c;使其具有相同的长度&#xff0c;以便进行批处理。填充使用指定的pad_token进行&#xff0c;并生成一个对应的mask标志列表&#xff0c;用于标记哪些部分是填充内容&am…

如何用3D格式转换工具HOOPS Exchange读取颜色和材料信息?

作为应用程序开发人员&#xff0c;非常希望导入部件的图形表示与它们在创作软件中的外观尽可能接近。外观可以在每个B-Rep面的基础上指定&#xff0c;而且&#xff0c;通过装配层次结构的特定路径可以在视觉外观上赋予父/子覆盖。HOOPS ExchangeHOOPS Exchange可捕获有关来自各…

新零售数字化商业模式如何建立?新零售数字化营销怎么做?

随着零售行业增速放缓、用户消费结构升级&#xff0c;企业需要需求新的价值增长点进行转型升级&#xff0c;从而为消费者提供更为多元化的消费需求、提升自己的消费体验。在大数据、物联网、5G及区块链等技术兴起的背景下&#xff0c;数字化新零售系统应运而生。 开利网络认为&…

让GPT人工智能变身常用工具-上

1.密码生成器:GPT为您创建安全密码 想象GPT作为您的个人密码生成器,负责从头到尾为您创建复杂且安全的密码。您只需要告诉他您的密码需求,比如密码的长度,是否包含大写字母、小写字母、数字或特殊字符,他会立即为您生成一个复杂但经过深度设计的密码。 例子: 我希望您…

数学学习总结

最近在准备一场考试&#xff0c;通过这几个月的学习发现数学思维还是有待建立&#xff0c;逻辑性、熟练度、思维想象力还是不足&#xff0c;本身数学基础不扎实&#xff0c;要通过这场考试&#xff0c;需要更进一步努力&#xff0c;复习一轮后&#xff0c;看视频、看老师讲解都…

Python 单继承、多继承、@property、异常、文件操作、线程与进程、进程间通信、TCP框架 7.24

单继承 class luban:def __init__(self, name):self.name nameself.skill "摸鱼飞弹"self.damageLevel 20def attack(self):print("{} 使用了技能{} &#xff0c;给敌方带来了极大的困扰\n""并有{}% 的机会造成一击必杀的效果".format(self.…