《TCP/IP详解 卷一》第10章 UDP和IP分片

目录

10.1 引言

10.2 UDP 头部

10.3 UDP校验和

10.4 例子

10.5 UDP 和 IPv6

10.6 UDP-Lite

10.7 IP分片

10.7.1 例子:IPV4 UDP分片

10.7.2 重组超时

10.8 采用UDP的路径MTU发现

10.9 IP分片和ARP/ND之间的交互

10.10 最大UDP数据报长度

10.11 UDP服务器的设计

10.11.1 IP地址和UDP端口号

10.11.2 限制本地IP地址

10.11.3 使用多地址

10.11.4 限制远端IP地址

10.11.5 每端口多服务器的使用

10.11.6 跨越地址族:IPv4和IPv6

10.11.7 流量和拥塞控制的缺失

10.12 UDP/IPV4和UDP/IPV6数据报的转换

10.13 互联网中的UDP

10.14 与UDP和IP分片相关的攻击

10.15 总结


10.1 引言

UDP(User Datagram Protocol):用户数据报协议。一种传输层协议。

        IPv4中协议字段值:17。

                特点:

                        有消息边界。

                        开销更小,因为没有TCP复杂机制。

当UDP应用程序每次调用send/write,就发出一个UDP数据报。

而TCP不一定,因为TCP可能分段,重组。

即TCP应用程序执行多次send/write调用会组合成一个数据包发送,或可能一个send/write调用被分成多个数据包发送。

10.2 UDP 头部

头部格式如下:

字段:

        源端口

        目的端口

        长度:UDP报文总长度,包括头部和数据。

        校验和:校验整个UDP报文。

每个socket在创建时必须指定协议类型(TCP或UDP),并绑定到特定端口。

因此,一个套接字不能同时监听TCP/UDP相同端口。

一个主机可以创建两个socket,分别监听TCP和UDP的相同端口号,表示两种不同服务。

10.3 UDP校验和

UDP校验和:校验范围覆盖UDP头部、UDP数据,伪头部。

伪头部(pseudo-header):

        计算UDP校验和时,根据IP头信息生成的虚拟头部。

        伪头部格式通常包括:

                源IP、目标IP、协议类型(UDP),UDP数据报总长等。

        作用:提供更多信息,确保校验更精确。

伪头部细节如下图:

NAT会改变报文IP和端口,所以经过NAT后需要重新校验和。

IPv4头中也有校验和,但只校验IPv4头内容,不包括IP载荷。

        在每跳都要重新计算,因为TTL字段值减小。

小结:

        IPv4头的校验和字段:只校验IPv4头内容。

        传输层TCP/UDP头的校验和字段:校验范围不仅包含传输层头,还有载荷。

10.4 例子

10.5 UDP 和 IPv6

IPv6中TCP/UDP都需要伪头部来计算校验和。

Teredo隧道:

        IPv6数据被封装成IPv4 UDP数据报后,发给Teredo中继,中继解封装后把IPv6报文转发给主机。

Teredo和GRE对比:

        通用性:

                GRE更通用,可封装任何类型数据包。

                Teredo只用于IPv4 UDP封装IPv6数据。

        实现方式:

                GRE:不需要服务器或中继。

                Teredo:需要服务器和中继。

10.6 UDP-Lite

UDP:校验是可选的,要么校验整个UDP报文,要么不校验。

UDP-Lite:对UDP数据一部分校验,而不是整个数据报校验。

        所以未校验部分,容忍比特差错。

UDP-Lite:有单独的IPv4协议和IPv6协议号。算是一种新的传输层协议。

所以UDP- Lite有一个校验和覆盖范围字段,表示需要校验哪部分数据。

        最小值为8,即只校验UDP-Lite头。

        特殊值:0,表示校验整个负载。

socket简化程序举例,设置UDP-Lite校验和覆盖范围:

int main() {

        int sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDPLITE);

        int send_cscov = 8; // 只校验UDP-Lite头。

        setsockopt(sockfd, IPPROTO_UDPLITE, UDPLITE_SEND_CSCOV, &send_cscov, sizeof(send_cscov)) ;

        

        int recv_cscov = 0; // 校验整个负载

        setsockopt(sockfd, IPPROTO_UDPLITE, UDPLITE_RECV_CSCOV, &recv_cscov, sizeof(recv_cscov));

}

10.7 IP分片

IPv6只允许源主机分片,不允许中间转发设备分片,可减少中间设备负担。

IPv4既允许源主机分片,也允许中间路由器分片。

IP数据报大于MTU则分片。

被分片IP数据报,到了目的地才会重组,这样设计有两个原因:

        1. 减轻中间路由器转发负担。

        2. 同一数据报的不同分片可能经不同路径到达目的地,此时路径上路由器不能收到所有分片,搜到没有能力重组原始数据。

10.7.1 例子:IPV4 UDP分片

数据报分片后,每个分片IPv4头中的总长度字段被修改成该分片的总长度。

任一分片丢失,整个IP数据报无法完整接收。

当TCP报文的一个分片丢失了,TCP协议栈会重传整个TCP报文段,所以通常尽量避免TCP分片。

除最后一个分片外所有分片数据部分应是8字节倍数。

tcpdump为了能打印除了第一个分片外的其他分片的端口号,尝试重组其他分片的数据报,以恢复只出现在第一个分片的UDP头部中的端口号。

10.7.2 重组超时

当任一分片最先到达时,IP层就启动计时器。

若超时前未收到所有分片,无法重组源报文,会丢弃所有分片,防止缓存耗尽。

超时时间:一般30s,60s。

只有接收到了第一个分片并且分片重组失败时,才产生ICMP错误。

10.8 采用UDP的路径MTU发现

PMTU:路径MTU 。

PMTUD:路径MTU发现。

        作用:发现路径中MTU的最小值。发送报文不超过MTU,防止分片。

UDP PMTUD原理:

        源端发送一个较大UDP数据报,并设置 DF(Don't Fragment)标志,确保不被分片。

        某个中间路由器发现数据报超过其出接口MTU,则丢弃该数据报并回复"Packet Too Big" 的ICMP 错误消息给源端。

        源端收到ICMP错误消息后,得到其中指示的MTU。于是重新发送较小的UDP数据报。

        重复该过程就获得一个可在所有路由器通过的MTU,即路径最小MTU,PMTU。

IP层会基于每个目的地址缓存一个PMTUD值,有到该目的地报文则更新,否则超时需要重新尝试PMTUD。

PPPoE MTU:1492

        1500字节去除了6字节PPPoE头部,2字节PPP头部。

10.9 IP分片和ARP/ND之间的交互

10.10 最大UDP数据报长度

理论一个IPv4数据报的最大长度是65535字节。

但实际存在限制,如:

        1. 系统,setsocketopt设置收发缓存大小。

        2. 应用程序。read/write指定读写大小数目小于一个UDP数据报,大多数时候发生API截断数据报,丢弃数据报里超过接收应用程序指定字节数的数据。

MSG_TRUNC标志位:

        当socket收到超过recv函数指定接收缓冲区大小时,如果设置该标志位,系统将丢弃缓冲区以外数据,并且不报告任何错误,而是正常返回已接收数据长度。

MSG_TRUNC使用方法:

        len = recvfrom(sockfd, buf, BUF_SIZE, MSG_TRUNC, (struct sockaddr *)&client_addr, &client_len);

如何获取截断数据大小:

        socklen_t optlen = sizeof(recv_len);

        getsockopt(sockfd, SOL_SOCKET, SO_RCVBUF, &recv_len, &optlen);

而TCP是连续的字节流,没有消息边界,不会被截断。

10.11 UDP服务器的设计

10.11.1 IP地址和UDP端口号

SO_REUSEADDR:

        一个socket选项,当一个socket被关闭后,它的端口号会继续一段时间的被占用。

        在这个时间内,其他程序无法绑定相同端口号,出现"Address already in use"错误。

        设置SO_REUSEADDR选项后,当socket关闭后,立即可以被其他程序绑定,无需等待一段时间。

如何设置SO_REUSEADDR属性:

        int reuse = 1;

        setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &reuse, sizeof(reuse));

10.11.2 限制本地IP地址

两种策略:

        1. 只有报文目的IP地址是该接收接口的IP时,才接收数据。

        2. 任何本地接口均可接收到目的IP是某本地接口之一的数据。

10.11.3 使用多地址

一台主机上,可以开启多个服务器进程,都使用同一个端口号,但每个服务器进程使用不同本机IP地址。

        通过ip addr add给本机设备配置多个IP地址。

此时需要用SO_REUSEADDR选项告诉系统允许重用相同的端口。

10.11.4 限制远端IP地址

可设置是否只接收来自指定源IPv4地址和端口号的UDP数据报。

10.11.5 每端口多服务器的使用

10.11.6 跨越地址族:IPv4和IPv6

10.11.7 流量和拥塞控制的缺失

UDP没有流量和拥塞控制机制。

10.12 UDP/IPV4和UDP/IPV6数据报的转换

10.13 互联网中的UDP

UDP占据了的互联网流量的10% ~ 40%,随着P2P应用增加,UDP流量也在上升。

互联网总体流量只有极少是分片的(大约分组数的0.3%,字节数的0.8%),而其中分片流量的68.3%是UDP。

常见分片流量如:

        多媒体视频流量(应用层大包)

        VPN隧道中封装/隧道流量(多层封装)

10.14 与UDP和IP分片相关的攻击

常见UDP DoS攻击:

        1. 短时间大流量。UDP没有流控。

        2. 放大攻击。伪造IP源成受害者地址,并设置目的地址为广播。于是广播目的地都回复报文给该受害者。

        3. 泪滴攻击。构造一个重叠偏移分片,可覆盖前一分片部分数据。

        4. 发送不带任何数据的分片,攻击IPv4重组程序。

10.15 总结

UDP是简单协议。

需要组播广播时使用UDP,可避免连接开销。

UDP使用场景:多媒体,P2P。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/708823.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

华为OD技术面试案例3-2024年

技术一面: 1.手撕代码,算法题: 【最小路径和】 手撕代码通过,面试官拍了照片 2.深挖项目,做过的自认为最好的一个项目,描述做过的项目的工作过程,使用到哪些技术? 技术二面&…

数电学习笔记——逻辑函数及其描述方法

目录 一、逻辑函数 二、逻辑函数的描述方法 1、逻辑真值表 2、逻辑函数式 3、逻辑图 4、波形图 三、逻辑函数的两种标准形式 1、最小项与最大项 最小项 最小项的性质 最大项 最大项的性质 2、最大项与最小项的关系 3、逻辑函数的最小项之和形式 4、逻辑函数的最…

(Linux学习二)文件管理基础操作命令笔记

Linux目录结构: bin 二进制文件 boot 启动目录 home 普通用户 root 超管 tmp 临时文件 run 临时运行数据 var 日志 usr 应用程序、文件 etc 配置文件 dev 文件系统 一、基础操作 在 Linux 终端中,你可以使用以下命令来清屏: clear 命令&am…

【深度学习:视频注释】如何为机器学习自动执行视频注释

【深度学习:视频注释】如何为机器学习自动执行视频注释 #1:多目标跟踪 (MOT) 以确保帧与帧之间的连续性#2:使用插值来填补空白#3: 使用微模型加速人工智能辅助视频注释#4: 自动目标分割提高目标分割质量 自动视频标记通…

Linux/Spectra

Enumeration nmap 第一次扫描发现系统对外开放了22,80和3306端口,端口详细信息如下 22端口运行着ssh,80端口还是http,不过不同的是打开了mysql的3306端口 TCP/80 进入首页,点击链接时,提示域名不能解析&…

分享一点PDF中获取表格的探索过程

版面分析:如何得到标题、如何的得到段落(正确的段落)、如何得到表格、如何得到图片,图和得到图片上的文字? 还有细节问题:双栏和多栏的问题、公式问题 扫描件:扫描件本质上是图片,如…

【三维重建】【slam】【分块重建】LocalRF:逐步优化的局部辐射场的鲁棒视图合成

项目地址:https://localrf.github.io/ 题目:Progressively Optimized Local Radiance Fields for Robust View Synthesis 来源:KAIST、National Taiwan University、Meta 、University of Maryland, College Park 提示:文章用了s…

【GB28181】wvp-GB28181-pro修改分屏监控为16画面(前端)

引言 作为一个非前端开发人员,自己摸索起来比较费劲,也浪费了很多时间 由于实际开发中,可能预览的画面多于8个,而wvp目前只支持8画面 本文快速帮助开发者修改分屏监控为多画面。例如16画面,20画面等 文章目录 一、 预期效果展示16分割画面20分割画面二、 源码修改-前端修改…

小白水平理解面试经典题目leetcode 606. Construct String from Binary Tree【递归算法】

Leetcode 606. 从二叉树构造字符串 题目描述 例子 小白做题 坐在自习室正在准备刷题的小白看到这道题,想想自己那可是没少和白月光做题呢,也不知道小美刷题刷到哪里了,这题怎么还没来问我,难道是王谦谦去做题了? 这…

用友 NC 23处接口XML实体注入漏洞复现

0x01 产品简介 用友 NC 是用友网络科技股份有限公司开发的一款大型企业数字化平台。 0x02 漏洞概述 用友 NC 多处接口存在XML实体注入漏洞,未经身份验证攻击者可通过该漏洞读取系统重要文件(如数据库配置文件、系统配置文件)、数据库配置文件等等,导致网站处于极度不安全…

使用PARP抑制剂Olaparib对骨肉瘤细胞进行放射增敏【AbMole】

骨肉瘤细胞来源于对辐射不敏感的骨形成间充质细胞。因此,科学家们希望找到新的方法能够使其对放射增敏。研究人员进行了使用PARP抑制剂Olaparib来增强骨肉瘤细胞的放射敏感性的研究。 研究方法主要包含以下几项实验:通过CCK-8和克隆形成实验评估Olapari…

使用 OpenCV 通过 SIFT 算法进行对象跟踪

本文介绍如何使用 SIFT 算法跟踪对象 在当今世界,当涉及到对象检测和跟踪时,深度学习模型是最常用的,但有时传统的计算机视觉技术也可能有效。在本文中,我将尝试使用 SIFT 算法创建一个对象跟踪器。 为什么人们会选择使用传统的计…

【Go语言】Go语言中的字典

Go语言中的字典 字典就是存储键值对映射关系的集合,在Go语言中,需要在声明时指定键和值的类型,此外Go语言中的字典是个无序集合,底层不会按照元素添加顺序维护元素的存储顺序。 如下所示,Go语言中字典的简单示例&…

java spring cloud 企业工程管理系统源码+二次开发+定制化服务

鸿鹄工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离构建工程项目管理系统 1. 项目背景 一、随着公司的快速发展,企业人员和经营规模不断壮大。为了提高工程管理效率、减轻劳动强度、提高信息处理速度和准确性,公司对内部工程管…

java开发环境配置一指禅

IDEA下载与安装 IDEA 全称 IntelliJ IDEA,是java编程语言的集成开发环境。 idea下载地址 。 JDK安装配置 JDK是 Java 语言的软件开发工具包,主要用于移动设备、嵌入式设备上的java应用程序。JDK是整个java开发的核心,它包含了JAVA的运行环…

以ARM Cortex-A55/A53为例分析 L1/L2/L3 cache所支持的写策略(write-back/wirte-through,写通和写回)

在文章 ARM 中缓存维护策略:Allocate policy(读分配/写分配),Write policy(写通/写回)以及replacement policy基础知识中,笔者介绍了ARM cache的Write policy(写通/写回)…

理解C转汇编后代码分析

题目 . - 力扣&#xff08;LeetCode&#xff09; 解题代码 #include <stdio.h> #include "stdbool.h"typedef struct {int score;int index;int count; } Record; Record records[26] {0};int totalScore(char *w) {int total 0;for (int i 0; i < st…

热点参数流控(Sentinel)

热点参数流控 热点流控 资源必须使用注解 SentinelResource 编写接口 以及 热点参数流控处理器 /*** 热点流控 必须使用注解 SentinelResource* param id* return*/ RequestMapping("/getById/{id}") SentinelResource(value "getById", blockHandler …

Java设计模式 | 七大原则之合成复用原则

基本介绍 合成复用原则&#xff08;Composite Reuse Principle&#xff09;尽量使用合成/聚合的方式&#xff0c;而不是使用继承 设计原则核心思想总结 找出应用中可能需要变化之处&#xff0c;把他们独立出来&#xff0c;不要和那些不需要变化的代码混在一起针对接口编程&…

八、ActiveMQ持久化

ActiveMQ持久化 一、MQ的高可用二、持久化介绍三、持久化存储方式1.AMQ Mesage Store(了解&#xff09;2.KahaDB消息存储(默认)2.1 存储原理 3.JDBC消息存储4.LevelDB消息存储(了解)5.JDBC Message Store with ActiveMQ Journal查询持久化存储方式 四、持久化存储使用1.JDBC消息…