🔥博客介绍`: 27dCnc
🎥系列专栏: <<数据结构与算法>> << 算法入门>> << C++项目>>
🎥 当前专栏: <<数据结构与算法>>
专题 : 数据结构帮助小白快速入门算法
👍👍👍👍👍👍👍👍👍👍👍👍
☆*: .。. o(≧▽≦)o .。.:*☆
❤️感谢大家点赞👍收藏⭐评论✍️
学习目标: 贪心算法
今日学习打卡
- 代码随想录-贪心算法
学习时间:
- 周一至周五晚上 7 点—晚上9点
- 周六上午 9 点-上午 11 点
- 周日下午 3 点-下午 6 点
学习内容:
- 买卖股票的最佳时机 II
- 跳跃游戏
- 跳跃游戏 II
内容详细:
122.买卖股票的最佳时机 II
考点: 贪心
动态规划
数组
本题首先要清楚两点:
- 只有一只股票!
- 当前只有买股票或者卖股票的操作
想获得利润至少要两天为一个交易单元。
然后在两天中去最大的 和 跳跃数组有点像
贪心解法
这道题目可能我们只会想,选一个低的买入,再选个高的卖,再选一个低的买入…循环反复。
如果想到其实最终利润是可以分解的,那么本题就很容易了!
如何分解呢?
假如第 0 天买入,第 3 天卖出,那么利润为:prices[3] - prices[0]。
相当于(prices[3] - prices[2]) + (prices[2] - prices[1]) + (prices[1] - prices[0])。
此时就是把利润分解为每天为单位的维度,而不是从 0 天到第 3 天整体去考虑!
那么根据 prices 可以得到每天的利润序列:(prices[i] - prices[i - 1])…(prices[1] - prices[0])。
如图
一些同学陷入:第一天怎么就没有利润呢,第一天到底算不算的困惑中。
第一天当然没有利润,至少要第二天才会有利润,所以利润的序列比股票序列少一天!
从图中可以发现,其实我们需要收集每天的正利润就可以,收集正利润的区间,就是股票买卖的区间,而我们只需要关注最终利润,不需要记录区间。
那么只收集正利润就是贪心所贪的地方!
局部最优:收集每天的正利润,全局最优:求得最大利润。
代码
class Solution {
public:int maxProfit(vector<int>& prices) {vector<int>profit;for (int i = 0; i < prices.size() - 1; i++) {profit.push_back(prices[i + 1] - prices[i]); // 讲每个段的利益计算}int cnt = 0;for (int i = 0; i < profit.size(); i++) {if (profit[i] > 0) cnt += profit[i]; //取大于0的利益}return cnt; // 返回最后统计的利益}
};
动态规划解法
class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(len, vector<int>(2, 0));dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); // 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);}return dp[len - 1][1];}
};
55. 跳跃游戏
题目考点: 数组
贪心
思维
解题思路
题目要求是要找到到达终点的方法,可以将问题抽象转化为区间覆盖问题,
其实跳几步无所谓,关键在于可跳的覆盖范围!
不一定非要明确一次究竟跳几步,每次取最大的跳跃步数,这个就是可以跳跃的覆盖范围。
这个范围内,别管是怎么跳的,反正一定可以跳过来。
那么这个问题就转化为跳跃覆盖范围究竟可不可以覆盖到终点!
每次移动取最大跳跃步数(得到最大的覆盖范围),每移动一个单位,就更新最大覆盖范围。
贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点。
局部最优推出全局最优,找不出反例,试试贪心!
i 每次移动只能在 cover 的范围内移动,每移动一个元素,cover 得到该元素数值(新的覆盖范围)的补充,让 i 继续移动下去。
而 cover 每次只取 max(该元素数值补充后的范围, cover 本身范围)。
如果 cover 大于等于了终点下标,直接 return true 就可以了
详细代码
class Solution {
public:bool canJump(vector<int>& nums) {int index = 0;if (nums.size() == 1) return true; // 只有一个元素,就是能达到for(int i = 0; i <= index; i++) {index = max((i + nums[i]), index);if(index >= nums.size()- 1) return true;}return false;}
};
class Solution {
public:bool canJump(vector<int>& nums) {int len = nums.size();int i = 0;int canGet = nums[0];while(i < len && i <= canGet){canGet = canGet > (i+nums[i]) ? canGet : (i+nums[i]);i++;}if (i == len){return true;}return false;}
};
45.跳跃游戏 II
题目考点: 贪心
数组
解题思路
与上一题思路相同,但是加了条件限制,要计算最小跳跃步数
本题要计算最少步数,那么就要想清楚什么时候步数才一定要加一呢?
贪心的思路,局部最优:当前可移动距离尽可能多走,如果还没到终点,步数再加一。整体最优:一步尽可能多走,从而达到最少步数。
思路虽然是这样,但在写代码的时候还不能真的能跳多远就跳多远,那样就不知道下一步最远能跳到哪里了。
所以真正解题的时候,要从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最少步数!
这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖。
如果移动下标达到了当前这一步的最大覆盖最远距离了,还没有到终点的话,那么就必须再走一步来增加覆盖范围,直到覆盖范围覆盖了终点。
详细代码
class Solution {
public:int jump(vector<int>& nums) {int cnt = 0;int ans = 0;int next = 0;if (nums.size() == 1) return 0;for (int i = 0; i < nums.size() - 1; i++) {cnt = cnt > i + nums[i] ? cnt : i + nums[i];if(i == next) {next = cnt;ans++;}}return ans;}
};
学习产出:
- 技术笔记 2 遍
- CSDN 技术博客 3 篇
- 习的 vlog 视频 1 个
重磅消息:
GTP - 4 最新版接入服务他来了 点击链接即可查看详细
GTP - 4 搭建教程
🔥如果此文对你有帮助的话,欢迎💗关注、👍点赞、⭐收藏、✍️评论,支持一下博主~