回归预测 | Matlab实现OOA-HKELM鱼鹰算法优化混合核极限学习机多变量回归预测

回归预测 | Matlab实现OOA-HKELM鱼鹰算法优化混合核极限学习机多变量回归预测

目录

    • 回归预测 | Matlab实现OOA-HKELM鱼鹰算法优化混合核极限学习机多变量回归预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现OOA-HKELM鱼鹰算法优化混合核极限学习机多变量回归预测(完整源码和数据)
2.运行环境为Matlab2021b;
3.excel数据集,输入多个特征,输出单个变量,多变量回归预测预测,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MAE、 MBE、MAPE、 RMSE多指标评价;
代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整源码和数据获取方式(资源出下载):Matlab实现OOA-HKELM鱼鹰算法优化混合核极限学习机多变量回归预测。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res =xlsread('data.xlsx','sheet1','A2:H104');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);f_ = size(P_train, 1);                  % 输入特征维度%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  参数设置
%% 获取最优正则化系数 C 和核函数参数 S 
Kernel_type1 = 'rbf'; %核函数类型1
Kernel_type2 = 'poly'; %核函数类型2%% 适应度函数
fobj=@(X)fobj(X,p_train,t_train,p_test,t_test,Kernel_type1,Kernel_type2);%% 优化算法参数设置
pop=10;
Max_iter=20;
ub=[20 10^(3) 10^(3) 10 1];  %优化的参量分别为:正则化系数C,rbf核函数的核系数S(接下)
lb=[1 10^(-3) 10^(-3) 1 0];  %多项式核函数的两个核系数poly1和poly2,以及核权重系数w
dim=5;
%%  优化算法
[Best_score,Best_P,curve] = RIME(pop, Max_iter, lb, ub, dim, fobj);%% 训练模型
%% 重新训练并进行预测

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/707415.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

单片机复位按键电路、唤醒按键电路

目录 单片机复位按键 外部手动复位 单片机复位按键电路 复位按键电路1 复位按键电路2 单片机唤醒按键 单片机唤醒按键电路 单片机复位按键 单片机复位:简单来说,复位引脚就是有复位信号,就是从头开始执行程序 本质:就是靠…

ui设计:利用即使设计设计出漂亮样式

目录 一、基本操作 二、具体介绍 6-1 填充图片 6-2 填充色 6-3 图标 右边栏基础设置 右边栏导出​编辑 一、基本操作 二、具体介绍 6-1 填充图片 选择其一图片填充 6-2 填充色 6-3 图标 右边栏基础设置 右边栏导出

javaWeb个人学习02

会话技术 会话: 用户打开浏览器,访问web服务器的资源,会话建立,直到有一方断开连接,会话结束.在一次会话中包含多次请求和响应 会话跟踪: 一种维护浏览器状态的方法,服务器需要识别多次请求是否来自于同一个浏览器,以便在同一次会话的多次请求之间共享数据 会话跟踪方案: …

数据脱敏(八)静态脱敏

HuggingFists低代码平台提供Mysql,Postgresql,Oracle,ClickHouse等多种数据库连接插件及配套读写算子。提供ftp,sftp,百度盘,阿里云文件系统,腾讯文件系统等多种文件系统连接插件及配套读写算子。满足用户静态脱敏场景下各种数据源要求。 静态脱敏-数据库…

2024智慧城市革命:人工智能、场景与运营的融合之力

在数字革命的浪潮中,2024年的智慧城市将成为人类社会进步的新地标。 三大关键元素——人工智能、场景应用和精准运营——正在重新塑造城市面貌,构建未来的智慧城市生活图景。 一、人工智能:赋能智慧城市 随着人工智能技术的快速发展&#x…

【README 小技巧】 展示gitee中开源项目start

【README 小技巧】 展示gitee中开源项目start <a target"_blank" hrefhttps://gitee.com/wujiawei1207537021/wu-framework-parent><img srchttps://gitee.com/wujiawei1207537021/wu-framework-parent/badge/star.svg altGitee star/></a>

【解读】工信部数据安全能力提升实施方案

近日&#xff0c;工信部印发《工业领域数据安全能力提升实施方案&#xff08;2024-2026年&#xff09;》&#xff0c;提出到2026年底&#xff0c;我国工业领域数据安全保障体系基本建立&#xff0c;基本实现各工业行业规上企业数据安全要求宣贯全覆盖。数据安全保护意识普遍提高…

python 基础绘图函数 实例

简介 在 Python 中&#xff0c;有许多用于绘图的库。以下是一些常用的 Python 绘图库及其基本绘图函数的简要介绍&#xff1a; Matplotlib: matplotlib.pyplot.plot(x, y): 绘制线图。matplotlib.pyplot.scatter(x, y): 绘制散点图。matplotlib.pyplot.bar(x, height): 绘制条…

搜维尔科技:OptiTrack 提供了性能最佳的动作捕捉平台

OptiTrack 动画 我们的 Prime 系列相机和 Motive 软件相结合&#xff0c;产生了世界上最大的捕获量、最精确的 3D 数据和有史以来最高的相机数量。OptiTrack 提供了性能最佳的动作捕捉平台&#xff0c;具有易于使用的制作工作流程以及运行世界上最大舞台所需的深度。 无与伦比…

机器学习模型的过拟合与欠拟合

机器学习模型的训练过程中&#xff0c;可能会出现3种情况&#xff1a;模型欠拟合、模型正常拟合与模型过拟合。其中模型欠拟合与模型过拟合都是不好的情况。下面将会从不同的角度介绍如何判断模型属于哪种拟合情况。 &#xff08;1&#xff09;欠拟合与过拟合表现方式 欠拟合…

GSVA -- 学习记录

文章目录 1.原理简介2. 注意事项3. 功能实现代码实现部分 4.可视化5.与GSEA比较 1.原理简介 Gene Set Variation Analysis (GSVA) 基因集变异分析。可以简单认为是样本数据中的基因根据表达量排序后形成了一个rank list&#xff0c;这个rank list 与 预设的gene sets&#xff…

第三百七十回

文章目录 1. 概念介绍2. 使用方法2.1 获取所有时区2.2 转换时区时间 3. 示例代码4. 内容总结 我们在上一章回中介绍了"分享一些好的Flutter站点"相关的内容&#xff0c;本章回中将介绍timezone包.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念介绍 我们在…

如何让网页APP化 渐进式Web应用(PWA)

前言 大家上网应该发现有的网页说可以安装对应应用&#xff0c;结果这个应用好像就是个web&#xff0c;不像是应用&#xff0c;因为这里采用了PWA相关技术。 PWA&#xff0c;全称为渐进式Web应用&#xff08;Progressive Web Apps&#xff09;&#xff0c;是一种可以提供类似…

【C++】树形关联式容器set、multiset、map和multimap的介绍与使用

&#x1f440;樊梓慕&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》《算法》 &#x1f31d;每一个不曾起舞的日子&#xff0c;都是对生命的辜负 目录 前言 1.关联式容器 2.键…

vue项目build 静态文件部署到fastapi后台中访问白屏,访问不到?

正常创建VUE项目那些应该都会&#xff0c;到项目最后 npm run build然后会生成一个dist文件夹 然后把这个文件夹的东西复制去到fastapi项目根目录创建一个static文件夹 然后开始写点代码 # main.py绑定静态文件目录 app.mount("/static", StaticFiles(directory&…

4核8g服务器能支持多少人访问?

腾讯云4核8G服务器支持多少人在线访问&#xff1f;支持25人同时访问。实际上程序效率不同支持人数在线人数不同&#xff0c;公网带宽也是影响4核8G服务器并发数的一大因素&#xff0c;假设公网带宽太小&#xff0c;流量直接卡在入口&#xff0c;4核8G配置的CPU内存也会造成计算…

广和通发布基于骁龙460移动平台的智能模组SC208,加速移动终端智能化

世界移动通信大会MWC 2024期间&#xff0c;广和通发布基于骁龙460移动平台开发的LTE智能模组SC208&#xff0c;旨在为智慧零售、智能手持、车载后装、多媒体等领域提供稳定高效的智能联网体验&#xff0c;加速行业应用创新与变革。 高通CDMA技术亚太有限公司副总裁ST Liew表示&…

代码遗产:探索祖传代码的历史、挑战与现代融合艺术

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua&#xff0c;在这里我会分享我的知识和经验。&#x…

【代码解读】OpenCOOD框架之model模块(以PointPillarFCooper为例)

point_pillar_fcooper PointPillarFCooperPointPillarsPillarVFEPFNLayerPointPillarScatterBaseBEVBackboneDownsampleConvDoubleConv SpatialFusion检测头 &#xff08;紧扣PointPillarFCooper的框架结构&#xff0c;一点一点看代码&#xff09; PointPillarFCooper # -*- c…

Linux环境安装jira

jira 是项目与事务跟踪工具&#xff0c;被广泛应用于缺陷跟踪、客户服务、需求收集、流程审批、任务跟踪、项目跟踪和敏捷管理等工作领域。 jira 软件安装包直接搜官网&#xff0c;然后可以选择免费的来下载&#xff1a; 安装 jira 之前&#xff0c;需要 Java 和 mysql 环境的…