YOLOv5-Openvino和ONNXRuntime推理【CPU】

1 环境:

CPU:i5-12500
Python:3.8.18

2 安装Openvino和ONNXRuntime

2.1 Openvino简介

Openvino是由Intel开发的专门用于优化和部署人工智能推理的半开源的工具包,主要用于对深度推理做优化。

Openvino内部集成了Opencv、TensorFlow模块,除此之外它还具有强大的Plugin开发框架,允许开发者在Openvino之上对推理过程做优化。

Openvino整体框架为:Openvino前端→ Plugin中间层→ Backend后端
Openvino的优点在于它屏蔽了后端接口,提供了统一操作的前端API,开发者可以无需关心后端的实现,例如后端可以是TensorFlow、Keras、ARM-NN,通过Plugin提供给前端接口调用,也就意味着一套代码在Openvino之上可以运行在多个推理引擎之上,Openvino像是类似聚合一样的开发包。

2.2 ONNXRuntime简介

ONNXRuntime是微软推出的一款推理框架,用户可以非常便利的用其运行一个onnx模型。ONNXRuntime支持多种运行后端包括CPU,GPU,TensorRT,DML等。可以说ONNXRuntime是对ONNX模型最原生的支持。

虽然大家用ONNX时更多的是作为一个中间表示,从pytorch转到onnx后直接喂到TensorRT或MNN等各种后端框架,但这并不能否认ONNXRuntime是一款非常优秀的推理框架。而且由于其自身只包含推理功能(最新的ONNXRuntime甚至已经可以训练),通过阅读其源码可以解深度学习框架的一些核心功能原理(op注册,内存管理,运行逻辑等)
总体来看,整个ONNXRuntime的运行可以分为三个阶段,Session构造,模型加载与初始化和运行。和其他所有主流框架相同,ONNXRuntime最常用的语言是python,而实际负责执行框架运行的则是C++。

2.3 安装

pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
pip install onnxruntime -i  https://pypi.tuna.tsinghua.edu.cn/simple

3 YOLOv5介绍

YOLOv5详解
Github:https://github.com/ultralytics/yolov5

4 基于Openvino和ONNXRuntime推理

下面代码整个处理过程主要包括:预处理—>推理—>后处理—>画图。
假设图像resize为640×640,
前处理输出结果维度:(1, 3, 640, 640);
推理输出结果维度:(1, 8400, 85),其中85表示4个box坐标信息+置信度分数+80个类别概率,8400表示80×80+40×40+20×20,不同于v8与v9采用类别里面最大的概率作为置信度score;
后处理输出结果维度:(5, 6),其中第一个5表示图bus.jpg检出5个目标,第二个维度6表示(x1, y1, x2, y2, conf, cls)。
注:与YOLOv6输出维度一致,可通用!!!

4.1 全部代码

import argparse
import time 
import cv2
import numpy as np
from openvino.runtime import Core  # pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
import onnxruntime as ort  # 使用onnxruntime推理用上,pip install onnxruntime,默认安装CPU# COCO默认的80类
CLASSES = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light','fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow','elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee','skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard','tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich','orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed','dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven','toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']class OpenvinoInference(object):def __init__(self, onnx_path):self.onnx_path = onnx_pathie = Core()self.model_onnx = ie.read_model(model=self.onnx_path)self.compiled_model_onnx = ie.compile_model(model=self.model_onnx, device_name="CPU")self.output_layer_onnx = self.compiled_model_onnx.output(0)def predirts(self, datas):predict_data = self.compiled_model_onnx([datas])[self.output_layer_onnx]return predict_dataclass YOLOv5:"""YOLOv5 object detection model class for handling inference and visualization."""def __init__(self, onnx_model, imgsz=(640, 640), infer_tool='openvino'):"""Initialization.Args:onnx_model (str): Path to the ONNX model."""self.infer_tool = infer_toolif self.infer_tool == 'openvino':# 构建openvino推理引擎self.openvino = OpenvinoInference(onnx_model)self.ndtype = np.singleelse:# 构建onnxruntime推理引擎self.ort_session = ort.InferenceSession(onnx_model,providers=['CUDAExecutionProvider', 'CPUExecutionProvider']if ort.get_device() == 'GPU' else ['CPUExecutionProvider'])# Numpy dtype: support both FP32 and FP16 onnx modelself.ndtype = np.half if self.ort_session.get_inputs()[0].type == 'tensor(float16)' else np.singleself.classes = CLASSES  # 加载模型类别self.model_height, self.model_width = imgsz[0], imgsz[1]  # 图像resize大小self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))  # 为每个类别生成调色板def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45):"""The whole pipeline: pre-process -> inference -> post-process.Args:im0 (Numpy.ndarray): original input image.conf_threshold (float): confidence threshold for filtering predictions.iou_threshold (float): iou threshold for NMS.Returns:boxes (List): list of bounding boxes."""# 前处理Pre-processt1 = time.time()im, ratio, (pad_w, pad_h) = self.preprocess(im0)print('预处理时间:{:.3f}s'.format(time.time() - t1))# 推理 inferencet2 = time.time()if self.infer_tool == 'openvino':preds = self.openvino.predirts(im)else:preds = self.ort_session.run(None, {self.ort_session.get_inputs()[0].name: im})[0]print('推理时间:{:.2f}s'.format(time.time() - t2))# 后处理Post-processt3 = time.time()boxes = self.postprocess(preds,im0=im0,ratio=ratio,pad_w=pad_w,pad_h=pad_h,conf_threshold=conf_threshold,iou_threshold=iou_threshold,)print('后处理时间:{:.3f}s'.format(time.time() - t3))return boxes# 前处理,包括:resize, pad, HWC to CHW,BGR to RGB,归一化,增加维度CHW -> BCHWdef preprocess(self, img):"""Pre-processes the input image.Args:img (Numpy.ndarray): image about to be processed.Returns:img_process (Numpy.ndarray): image preprocessed for inference.ratio (tuple): width, height ratios in letterbox.pad_w (float): width padding in letterbox.pad_h (float): height padding in letterbox."""# Resize and pad input image using letterbox() (Borrowed from Ultralytics)shape = img.shape[:2]  # original image shapenew_shape = (self.model_height, self.model_width)r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])ratio = r, rnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2  # wh paddingif shape[::-1] != new_unpad:  # resizeimg = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1))left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1))img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))  # 填充# Transforms: HWC to CHW -> BGR to RGB -> div(255) -> contiguous -> add axis(optional)img = np.ascontiguousarray(np.einsum('HWC->CHW', img)[::-1], dtype=self.ndtype) / 255.0img_process = img[None] if len(img.shape) == 3 else imgreturn img_process, ratio, (pad_w, pad_h)# 后处理,包括:阈值过滤与NMSdef postprocess(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold):"""Post-process the prediction.Args:preds (Numpy.ndarray): predictions come from ort.session.run().im0 (Numpy.ndarray): [h, w, c] original input image.ratio (tuple): width, height ratios in letterbox.pad_w (float): width padding in letterbox.pad_h (float): height padding in letterbox.conf_threshold (float): conf threshold.iou_threshold (float): iou threshold.Returns:boxes (List): list of bounding boxes."""# (Batch_size, Num_anchors, xywh_score_conf_cls), v5和v6_1.0的[..., 4]是置信度分数,v8v9采用类别里面最大的概率作为置信度scorex = preds  # outputs: predictions (1, 8400, 85)# Predictions filtering by conf-thresholdx = x[x[..., 4] > conf_threshold]# Create a new matrix which merge these(box, score, cls) into one# For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.htmlx = np.c_[x[..., :4], x[..., 4], np.argmax(x[..., 5:], axis=-1)]# NMS filtering# 经过NMS后的值, np.array([[x, y, w, h, conf, cls], ...]), shape=(-1, 4 + 1 + 1)x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)]# 重新缩放边界框,为画图做准备if len(x) > 0:# Bounding boxes format change: cxcywh -> xyxyx[..., [0, 1]] -= x[..., [2, 3]] / 2x[..., [2, 3]] += x[..., [0, 1]]# Rescales bounding boxes from model shape(model_height, model_width) to the shape of original imagex[..., :4] -= [pad_w, pad_h, pad_w, pad_h]x[..., :4] /= min(ratio)# Bounding boxes boundary clampx[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])return x[..., :6]  # boxeselse:return []# 绘框def draw_and_visualize(self, im, bboxes, vis=False, save=True):"""Draw and visualize results.Args:im (np.ndarray): original image, shape [h, w, c].bboxes (numpy.ndarray): [n, 4], n is number of bboxes.vis (bool): imshow using OpenCV.save (bool): save image annotated.Returns:None"""# Draw rectangles for (*box, conf, cls_) in bboxes:# draw bbox rectanglecv2.rectangle(im, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),self.color_palette[int(cls_)], 1, cv2.LINE_AA)cv2.putText(im, f'{self.classes[int(cls_)]}: {conf:.3f}', (int(box[0]), int(box[1] - 9)),cv2.FONT_HERSHEY_SIMPLEX, 0.7, self.color_palette[int(cls_)], 2, cv2.LINE_AA)# Show imageif vis:cv2.imshow('demo', im)cv2.waitKey(0)cv2.destroyAllWindows()# Save imageif save:cv2.imwrite('demo.jpg', im)if __name__ == '__main__':# Create an argument parser to handle command-line argumentsparser = argparse.ArgumentParser()parser.add_argument('--model', type=str, default='yolov5s.onnx', help='Path to ONNX model')parser.add_argument('--source', type=str, default=str('bus.jpg'), help='Path to input image')parser.add_argument('--imgsz', type=tuple, default=(640, 640), help='Image input size')parser.add_argument('--conf', type=float, default=0.25, help='Confidence threshold')parser.add_argument('--iou', type=float, default=0.45, help='NMS IoU threshold')parser.add_argument('--infer_tool', type=str, default='openvino', choices=("openvino", "onnxruntime"), help='选择推理引擎')args = parser.parse_args()# Build modelmodel = YOLOv5(args.model, args.imgsz, args.infer_tool)# Read image by OpenCVimg = cv2.imread(args.source)# Inferenceboxes = model(img, conf_threshold=args.conf, iou_threshold=args.iou)# Visualizeif len(boxes) > 0:model.draw_and_visualize(img, boxes, vis=False, save=True)

4.2 结果

在这里插入图片描述

具体时间消耗:

预处理时间:0.005s(包含Pad)
推理时间:0.04~0.05s(Openvino)
推理时间:0.08~0.09s(ONNXRuntime)
后处理时间:0.001s
注:640×640下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/705752.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IDEA的LeetCode插件的设置

一、下载插件 选择点击File->Setting->Plugins:搜索LeetCode 二、打开这个插件 选择View —>Tool Windows—>leetcode 三、登陆自己的账号 关于下面几个参数的定义,官方给的是: Custom code template: 开启使用自定义模板&…

Springboot教程(二)——过滤器、拦截器

过滤器 过滤器可以在调用控制器方法之前进行一些操作,过滤器类一般放在filter包下。 配置类注册 使用过滤器时,要实现Filter接口,并重写doFilter方法: class TestFilter : Filter {override fun doFilter(request: ServletReq…

对数据结构的初步认识

前言: 牛牛开始更新数据结构的知识了.本专栏后续会分享用c语言实现顺序表,链表,二叉树,栈和队列,排序算法等相关知识,欢迎友友们互相学习,可以私信互相讨论哦! 🎈个人主页:🎈 :✨✨✨初阶牛✨✨✨ 🐻推荐专栏: 🍔🍟&a…

【简写Mybatis】02-注册机的实现以及SqlSession处理

前言 注意: 学习源码一定一定不要太关注代码的编写,而是注意代码实现思想: 通过设问方式来体现代码中的思想;方法:5W1H 源代码:https://gitee.com/xbhog/mybatis-xbhog;https://github.com/xbh…

%00截断 [GKCTF 2020]cve版签到

打开题目 F12之后在Headers中发现hint 两者结合利用零字符截断使get_headers()请求到本地127.0.0. 结合链接 构造 ?urlhttp://127.0.0.1%00www.ctfhub.com 必须以123结尾 ?urlhttp://127.0.0.123%00www.ctfhub.com 得到flag 知识点: PHP中get_headers函数 g…

解析ChatGPT Plus相比chatgpt3.5有哪些优势

「ChatGPT Plus」提供更出色的对话体验和更广泛的应用能力,学生可以用来写作、职场人也可以用来写计划书、策划书等等,并且问它一些问题比搜索引擎好用多了简直。但普通人使用起来有一点门槛,并且升级4.0也难住了许多爱好者。 ChatGPT主要功能…

【Excel PDF 系列】EasyExcel + iText 库

你知道的越多,你不知道的越多 点赞再看,养成习惯 如果您有疑问或者见解,欢迎指教: 企鹅:869192208 文章目录 前言转换前后效果引入 pom 配置代码实现定义 ExcelDataVo 对象主方法EasyExcel 监听器 前言 最近遇到生成 …

微信小程序蓝牙通信HC08

总结这两天研究的蓝牙串口。人话版资料不多,主要靠翻别人的仓库和文档。 单片机部分,与蓝牙串口通信是通过串口。比我想的要简单,小程序部分,有非常多的服务和特征,而且人话版资料不多。 如果本文有什么问题&#xf…

AI绘画工具合集,让想象触手可及!

人不走空 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌赋:斯是陋室,惟吾德馨 目录 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌…

【目标检测新SOTA!v7 v4作者新作!】YOLO v9 思路设计 + 全流程优化 + 手把手训练自己数据

YOLO v9 思路复现 全流程优化 手把手训练自己数据 提出背景:深层网络的 信息丢失、梯度流偏差YOLO v9 设计逻辑可编程梯度信息(PGI):使用PGI改善训练过程广义高效层聚合网络(GELAN):使用GELAN…

华为数通方向HCIP-DataCom H12-821题库(单选题:481-500)

第481题 以下关于基于SD-WAN思想的EVPN互联方案的描述,错误的是哪一项? A、通过部署独立的控制面,将网络转发和控制进行了分离,从而实现了网络控制的集中化 B、通过对WAN网络抽象和建模,将上层网络业务和底层网络具体实现架构进行解耦,从而实现网络自动化 C、通过集中的…

四、分类算法 - 决策树

目录 1、认识决策树 2、决策树分类原理详解 3、信息论基础 3.1 信息 3.2 信息的衡量 - 信息量 - 信息熵 3.3 决策树划分的依据 - 信息增益 3.4 案例 4、决策树API 5、案例:用决策树对鸢尾花进行分类 6、决策树可视化 7、总结 8、案例:泰坦尼…

深度学习手写字符识别:推理过程

说明 本篇博客主要是跟着B站中国计量大学杨老师的视频实战深度学习手写字符识别。 第一个深度学习实例手写字符识别 深度学习环境配置 可以参考下篇博客,网上也有很多教程,很容易搭建好深度学习的环境。 Windows11搭建GPU版本PyTorch环境详细过程 数…

stable diffusion学习笔记 手部修复

图片手部修复原理 某张图片在生成后,仅有手部表现不符合预期(多指,畸形等)。这种情况下我们通常使用【局部重绘】的方式对该图片的手部进行【图生图】操作,重新绘制手部区域。 但是仅采用重绘的方式也很难保证生成的…

python爬虫实战:获取电子邮件和联系人信息

引言 在数字时代,电子邮件和联系人信息成为了许多企业和个人重要的资源,在本文中,我们将探讨如何使用Python爬虫从网页中提取电子邮件和联系人信息,并附上示例代码。 目录 引言 二、准备工作 你可以使用以下命令来安装这些库&a…

将文件从windows传入到ubuntu

实现效果图 2.方法: 2.1打开 Ubuntu 的终端窗口,然后执行如下命令来安装 FTP 服务 输入:sudo apt-get install vsftpd 等待软件自动安装,安装完成以后使用如下 VI 命令打开/etc/vsftpd.conf,命令如下:su…

Git Windows安装教程

Git简介 Git是目前世界上最先进的分布式版本控制系统。它的工作原理 / 流程如下: [ Workspace:工作区 Index / Stage:暂存区 Repository:仓库区(或本地仓库) Remote:远程仓库 ] Git的下载 去 Git 官网下载对应系统的软件了,下…

用39块钱的全志V851se视觉开发板做了个小相机,还可以物品识别、自动追焦!

用39块钱的V851se视觉开发板做了个小相机。 可以进行物品识别、自动追焦! 这个超低成本的小相机是在V851se上移植使用全志在线开源版本的Tina Linux与OpenCV框架开启摄像头拍照捕获视频,并结合NPU实现Mobilenet v2目标分类识别以及运动追踪等功能…并最终…

dolphinscheduler集群部署教程

文章目录 前言一、架构规划二、配置集群免密登录1. 配置root用户集群免密登录1.1 hadoop101节点操作1.2 hadoop102节点操作1.3 hadoop103节点操作 2. 创建用户2.1 hadoop101节点操作2.2 hadoop102节点操作2.3 hadoop103节点操作 三、安装准备1. 安装条件2. 安装jdk3. 安装MySQL…

“智能语音指令解析“ 基于NLP与语音识别的工单关键信息提取

“智能语音指令解析“ 基于NLP与语音识别的工单关键信息提取 1. 背景介绍1.1 场景痛点1.2 方案选型 2. 准备开发环境3. PaddleSpeech 语音识别快速使用4. PaddleNLP 信息抽取快速使用5. 语音工单信息抽取核心功能实现6. 语音工单信息抽取网页应用6.1 网页前端6.2 网页后端6.3 a…