C# Onnx yolov8-obb 旋转目标检测

目录

效果

模型信息

项目

代码

下载


C# Onnx Yolov8-OBB 旋转目标检测

效果

模型信息

Model Properties
-------------------------
date:2024-02-26T08:38:44.171849
description:Ultralytics YOLOv8s-obb model trained on runs/DOTAv1.0-ms.yaml
author:Ultralytics
task:obb
license:AGPL-3.0 https://ultralytics.com/license
version:8.1.18
stride:32
batch:1
imgsz:[640, 640]
names:{0: 'plane', 1: 'ship', 2: 'storage tank', 3: 'baseball diamond', 4: 'tennis court', 5: 'basketball court', 6: 'ground track field', 7: 'harbor', 8: 'bridge', 9: 'large vehicle', 10: 'small vehicle', 11: 'helicopter', 12: 'roundabout', 13: 'soccer ball field', 14: 'swimming pool'}
---------------------------------------------------------------

Inputs
-------------------------
name:images
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------

Outputs
-------------------------
name:output0
tensor:Float[1, 20, 8400]
---------------------------------------------------------------

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;
using System.Linq;
using System.Numerics;
using System.Windows.Forms;namespace Onnx_Yolov8_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string classer_path;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;Mat result_image;public string[] class_lables;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_container;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}button2.Enabled = false;pictureBox2.Image = null;textBox1.Text = "";Application.DoEvents();//图片缩放image = new Mat(image_path);int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);Rect roi = new Rect(0, 0, image.Cols, image.Rows);image.CopyTo(new Mat(max_image, roi));float[] result_array;float factor = (float)(max_image_length / 640.0);// 将图片转为RGB通道Mat image_rgb = new Mat();Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);Mat resize_image = new Mat();Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));// 输入Tensorfor (int y = 0; y < resize_image.Height; y++){for (int x = 0; x < resize_image.Width; x++){input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;}}//将 input_tensor 放入一个输入参数的容器,并指定名称input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_container);dt2 = DateTime.Now;// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();result_array = result_tensors.ToArray();Mat result_data = new Mat(20, 8400, MatType.CV_32F, result_array);result_data = result_data.T();List<Rect2d> position_boxes = new List<Rect2d>();List<int> class_ids = new List<int>();List<float> confidences = new List<float>();List<float> rotations = new List<float>();// Preprocessing output resultsfor (int i = 0; i < result_data.Rows; i++){Mat classes_scores = new Mat(result_data, new Rect(4, i, 15, 1));OpenCvSharp.Point max_classId_point, min_classId_point;double max_score, min_score;// Obtain the maximum value and its position in a set of dataCv2.MinMaxLoc(classes_scores, out min_score, out max_score,out min_classId_point, out max_classId_point);// Confidence level between 0 ~ 1// Obtain identification box informationif (max_score > 0.25){float cx = result_data.At<float>(i, 0);float cy = result_data.At<float>(i, 1);float ow = result_data.At<float>(i, 2);float oh = result_data.At<float>(i, 3);double x = (cx - 0.5 * ow) * factor;double y = (cy - 0.5 * oh) * factor;double width = ow * factor;double height = oh * factor;Rect2d box = new Rect2d();box.X = x;box.Y = y;box.Width = width;box.Height = height;position_boxes.Add(box);class_ids.Add(max_classId_point.X);confidences.Add((float)max_score);rotations.Add(result_data.At<float>(i, 19));}}// NMS int[] indexes = new int[position_boxes.Count];CvDnn.NMSBoxes(position_boxes, confidences, 0.25f, 0.7f, out indexes);List<RotatedRect> rotated_rects = new List<RotatedRect>();for (int i = 0; i < indexes.Length; i++){int index = indexes[i];float w = (float)position_boxes[index].Width;float h = (float)position_boxes[index].Height;float x = (float)position_boxes[index].X + w / 2;float y = (float)position_boxes[index].Y + h / 2;float r = rotations[index];float w_ = w > h ? w : h;float h_ = w > h ? h : w;r = (float)((w > h ? r : (float)(r + Math.PI / 2)) % Math.PI);RotatedRect rotate = new RotatedRect(new Point2f(x, y), new Size2f(w_, h_), (float)(r * 180.0 / Math.PI));rotated_rects.Add(rotate);}result_image = image.Clone();for (int i = 0; i < indexes.Length; i++){int index = indexes[i];Point2f[] points = rotated_rects[i].Points();for (int j = 0; j < 4; j++){Cv2.Line(result_image, (OpenCvSharp.Point)points[j], (OpenCvSharp.Point)points[(j + 1) % 4], new Scalar(0, 255, 0), 2);}Cv2.PutText(result_image, class_lables[class_ids[index]] + "-" + confidences[index].ToString("0.00"),(OpenCvSharp.Point)points[0], HersheyFonts.HersheySimplex, 0.8, new Scalar(0, 0, 255), 2);}pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";button2.Enabled = true;}private void Form1_Load(object sender, EventArgs e){model_path = "model/yolov8s-obb.onnx";classer_path = "model/lable.txt";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 输入Tensorinput_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });// 创建输入容器input_container = new List<NamedOnnxValue>();List<string> str = new List<string>();StreamReader sr = new StreamReader(classer_path);string line;while ((line = sr.ReadLine()) != null){str.Add(line);}class_lables = str.ToArray();image_path = "test_img/1.png";pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);}private void pictureBox1_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox1.Image);}private void pictureBox2_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox2.Image);}SaveFileDialog sdf = new SaveFileDialog();private void button3_Click(object sender, EventArgs e){if (pictureBox2.Image == null){return;}Bitmap output = new Bitmap(pictureBox2.Image);sdf.Title = "保存";sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";if (sdf.ShowDialog() == DialogResult.OK){switch (sdf.FilterIndex){case 1:{output.Save(sdf.FileName, ImageFormat.Jpeg);break;}case 2:{output.Save(sdf.FileName, ImageFormat.Png);break;}case 3:{output.Save(sdf.FileName, ImageFormat.Bmp);break;}case 4:{output.Save(sdf.FileName, ImageFormat.Emf);break;}case 5:{output.Save(sdf.FileName, ImageFormat.Exif);break;}case 6:{output.Save(sdf.FileName, ImageFormat.Gif);break;}case 7:{output.Save(sdf.FileName, ImageFormat.Icon);break;}case 8:{output.Save(sdf.FileName, ImageFormat.Tiff);break;}case 9:{output.Save(sdf.FileName, ImageFormat.Wmf);break;}}MessageBox.Show("保存成功,位置:" + sdf.FileName);}}}
}

下载

源码下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/705716.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决:“出现问题,Outlook 无法设置你的账户”

原文&#xff1a;https://blog.iyatt.com/?p14213 1 问题描述 Office 专业版 2024 预览版 在 Outlook 输入邮箱后无法进一步配置登录信息&#xff08;腾讯企业邮箱 Exchange 登录&#xff09; 2 解决方法 通过控制面板里的邮箱设置可以正常添加登录&#xff0c;而且能…

【总第49篇】2.3深度学习开发任务实例(2)机器学习和深度学习的对比【大厂AI课学习笔记】

机器学习和深度学习都是用于图片分类任务的强大工具&#xff0c;但它们采用的方法和原理有所不同。下面我将分别解释这两种技术是如何应用于图片分类的&#xff0c;并着重讨论深度学习中的卷积概念。 机器学习在图片分类中的应用 传统的机器学习方法在进行图片分类时&#xf…

用GGUF和Llama .cpp量化Llama模型

用GGUF和Llama .cpp量化Llama模型 什么是GGML如何用GGML量化llm使用GGML进行量化NF4 vs. GGML vs. GPTQ结论 由于大型语言模型&#xff08;LLMS&#xff09;的庞大规模&#xff0c;量化已成为有效运行它们的必要技术。通过降低其权重的精度&#xff0c;您可以节省内存并加快推理…

多模态表征—CLIP及中文版Chinese-CLIP:理论讲解、代码微调与论文阅读

我之前一直在使用CLIP/Chinese-CLIP&#xff0c;但并未进行过系统的疏导。这次正好可以详细解释一下。相比于CLIP模型&#xff0c;Chinese-CLIP更适合我们的应用和微调&#xff0c;因为原始的CLIP模型只支持英文&#xff0c;对于我们的中文应用来说不够友好。Chinese-CLIP很好地…

Linux使用Docker部署在线协作白板WBO并结合内网穿透发布公网远程访问

文章目录 前言1. 部署WBO白板2. 本地访问WBO白板3. Linux 安装cpolar4. 配置WBO公网访问地址5. 公网远程访问WBO白板6. 固定WBO白板公网地址 前言 WBO在线协作白板是一个自由和开源的在线协作白板&#xff0c;允许多个用户同时在一个虚拟的大型白板上画图。该白板对所有线上用…

【Vue3】插槽使用和animate使用

插槽使用 插槽slot匿名插槽具名插槽插槽作用域简写 动态插槽transition动画组件自定义过渡class类名如何使用animate动画库组件动画生命周期appear transition- group过渡列表 插槽slot 插槽就是子组件中提供给父组件使用的一个占位符父组件可以在这个占位符智能填充任何模板代…

SpringBoot -【BeanPostProcessor】基础使用及应用场景

BeanPostProcessor应用与优化 1. 引言 在现代软件开发中&#xff0c;企业开发面临着越来越复杂的系统架构和业务需求。随着项目规模的扩大和技术栈的增多&#xff0c;需要更高效的工具来应对这些挑战&#xff0c;并确保代码的可维护性和扩展性。 在这样的背景下&#xff0c;Be…

滴滴在合规宽限期内不能出车,滴滴平台会怎么处罚

滴滴合规宽限期内违规出车&#xff0c;平台严惩不贷&#xff01; 滴滴合规政策回顾 滴滴出行作为国内领先的出行平台&#xff0c;始终致力于为用户提供安全、合规的出行服务。为了保障乘客权益&#xff0c;滴滴对司机和车辆都有严格的合规要求。在合规宽限期内&#xff0c;滴…

MySQL的SQL语句

1.MySQL连接 连接命令一般是这样写的 mysql -h$ip -P$port -u$user -p比如:mysql -h127.0.0.1 -P3306 -uroot -p -h 指定连接的主机地址&#xff1b;-P 指定连接端口号&#xff1b;-u 指定用户名 -p指定用户名密码 2.SQL分类 DDL(Data Definition Language) 数据定义语言&…

动态规划的时间复杂度优化

作者推荐 视频算法专题 本文涉及知识点 动态规划汇总 优化动态规划的时间复杂度&#xff0c;主要有如下几种&#xff1a; 一&#xff0c;不同的状态表示。 比如&#xff1a;n个人&#xff0c;m顶帽子。 第一种方式&#xff1a;dp[i][mask] ,i表示前i个人已经选择帽子&…

再见,Visual Basic——曾经风靡一时的编程语言

2020年3月&#xff0c;微软团队宣布了对Visual Basic&#xff08;VB&#xff09;的“终审判决”&#xff1a;不再进行开发或增加新功能。这意味着曾经风光无限的VB正式退出了历史舞台。 VB是微软推出的首款可视化编程软件&#xff0c;自1991年问世以来&#xff0c;便受到了广大…

国际生物发酵产品技术展2024-齐力控股

参展企业介绍 齐力控股集团凭借在此领域多年的生产经验&#xff0c;为客户提供各种优质的产品。齐力控股集团与世界同步的生产宗旨&#xff0c;确立完整的角色定位和明确方向&#xff0c;向大众传递本公司的营销特点和服务模式。本公司是一家集科研、生产为一体的现代企业&…

如何进行Appium实现移动端UI自动化测试?

&#x1f345; 视频学习&#xff1a;文末有免费的配套视频可观看 &#x1f345; 关注公众号【互联网杂货铺】&#xff0c;回复 1 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 Appium是一个开源跨平台移动应用自动化测试框架。 既然只是想学…

瑞_Redis_Redis客户端

文章目录 1 Redis客户端1.1 Redis命令行客户端1.2 图形化桌面客户端1.2.1 资源准备1.2.2 安装1.2.3 建立连接 &#x1f64a; 前言&#xff1a;本文章为瑞_系列专栏之《Redis》的基础篇的Redis客户端章节。由于博主是从B站黑马程序员的《Redis》学习其相关知识&#xff0c;所以本…

Spring11、整合Mybatis

11、整合Mybatis 步骤&#xff1a; 导入相关jar包 junit <dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version> </dependency> mybatis <dependency><groupId>org.my…

Qt QWidget 简约美观的加载动画 第二季

&#x1f603; 第二季来啦 &#x1f603; 简约的加载动画,用于网络查询等耗时操作时给用户的提示. 这是最终效果: 一共只有三个文件,可以直接编译运行 //main.cpp #include "LoadingAnimWidget.h" #include <QApplication> #include <QVBoxLayout> #i…

如何保护企业免受人工智能网络钓鱼攻击

文章目录 前言一、生成式人工智能带来了新的网络安全威胁二、人工智能将使网络钓鱼攻击变得更加危险三、企业如何阻止人工智能驱动的网络钓鱼四、网络钓鱼模拟确保责任感和适应性前言 网络钓鱼是网络犯罪分子社会工程武器库中的超级武器。网络钓鱼尤其危险,因为它是网络犯罪分…

Redis 管道详解

Redis 管道 关键词&#xff1a;Pipeline Pipeline 简介 Redis 是一种基于 C/S 模型以及请求/响应协议的 TCP 服务。通常情况下&#xff0c;一个 Redis 命令的请求、响应遵循以下步骤&#xff1a; 客户端向服务端发送一个查询请求&#xff0c;并监听 Socket 返回&#xff08…

美创科技荣获“2023年网络安全国家标准优秀实践案例”

近日&#xff0c;全国网络安全标准化技术委员会正式公布2023年网络安全国家标准优秀实践案例获奖名单。 杭州美创科技股份有限公司&#xff08;以下简称&#xff1a;美创科技&#xff09;申报的“GB/T 20281-2020《信息安全技术 防火墙安全技术要求和测试评价方法》在政企领域数…

【监督学习之支持向量机(SVM)】

曾梦想执剑走天涯&#xff0c;我是程序猿【AK】 目录 简述概要知识图谱基本原理支持向量线性SVM与非线性SVM优化问题软间隔与正则化SVM的应用实现 简述概要 了解监督学习-支持向量机&#xff08;SVM&#xff09; 知识图谱 支持向量机&#xff08;Support Vector Machine&…