用GGUF和Llama .cpp量化Llama模型

用GGUF和Llama .cpp量化Llama模型

  • 什么是GGML
  • 如何用GGML量化llm
  • 使用GGML进行量化
  • NF4 vs. GGML vs. GPTQ
  • 结论

由于大型语言模型(LLMS)的庞大规模,量化已成为有效运行它们的必要技术。通过降低其权重的精度,您可以节省内存并加快推理,同时保留大部分模型性能。最近,8-bit和4-bit量化解锁了在消费者硬件上运行LLM的可能性。加上Llama模型和参数有效技术以微调它们(Lora,Qlora)的释放,这创建了一个丰富的本地LLM生态系统,该生态系统现在正在与OpenAI的GPT-3.5和GPT-4竞争。

目前,主要有三种量化技术:NF4、GPTQ和GGML。NF4是QLoRA使用的静态方法,用于以4位精度加载模型以执行微调。在上一篇文章中,我们探讨了GPTQ方法,并量化了我们自己的模型,以便在消费者GPU上运行它。在本文中,我们将介绍GGML技术,了解如何量化Llama模型,并提供实现最佳结果的提示和技巧。

什么是GGML

GGML是一个专注于机器学习的C语言库。它是由Georgi Gerganov创建的,这是GG的首字母缩写。这个库不仅提供了机器学习的基本元素,如张量,而且还提供了一种独特的二进制格式来分发llm。

该格式最近更改为GGUF。这种新格式被设计为可扩展的,因此新特性不会破坏与现有模型的兼容性。它还将所有元数据集中在一个文件中,例如特殊 tokens、RoPE缩放参数等。简而言之,它解决了历史上的一些痛点,而且应该经得起未来的考验。欲了解更多信息,您可以在此地址阅读规范。在本文的其余部分,我们将称使用GGUF或以前格式的所有模型为GGML模型。

GGML设计为与Georgi Gerganov创建的Llama.CPP库一起使用。该库用C/C ++编写,以有效地推理 Llama模型。它可以加载GGML型号并将其运行在CPU上。最初,这是与GPTQ模型的主要区别,该模型已加载并在GPU上运行。但是,您现在可以使用Llama.cpp将LLM的一些LLM层卸载到GPU。为了给您一个例子,有35层用于7B参数模型。这大大加快了推理,并使您可以运行不适合VRAM的LLM。
在这里插入图片描述
如果您喜欢命令行工具,那么llama.cpp和GGUF支持已经集成到许多gui中,例如oobabooga的文本生成web-ui、koboldcpp、LM Studio或ctransformers。您可以简单地用这些工具加载您的GGML模型,并以类似chatgpt的方式与它们交互。幸运的是,许多量化模型可以直接在Hugging Face Hub 上使用。您很快就会注意到,它们中的大多数都是由LLM社区的知名人物TheBloke量化的。

在下一节中,我们将看到如何量化我们自己的模型并在消费级GPU上运行它们。

如何用GGML量化llm

让我们看一下 thebloke/Llama-2-13b-chat-ggml repo内部的文件。我们可以看到14种不同的GGML模型,与不同类型的量化相对应。他们遵循特定的命名约定:“ Q” +用于存储权重(精度) +特定变体的位数。这是根据TheBloke制作的型号卡的所有可能定量方法及其相应用例的列表:
在这里插入图片描述
根据经验,我建议使用Q5_K_M,因为它保留了该型号的大部分性能。另外,如果想节省一些内存,也可以使用 Q4_K_M。一般来说,K_M版本优于 K_S 版本。我不推荐 Q2_K 或 Q3 *版本,因为它们会大大降低模型的性能。

现在我们了解了更多可用的量化类型,让我们看看如何在实际模型中使用它们。您可以在Google Colab上的免费T4 GPU上执行以下代码。第一步包括编译llama.cpp并在Python环境中安装所需的库。

# Install llama.cpp
!git clone https://github.com/ggerganov/llama.cpp
!cd llama.cpp && git pull && make clean && LLAMA_CUBLAS=1 make
!pip install -r llama.cpp/requirements.txt

现在我们可以下载我们的模型。我们将使用本文中的Mlabonne/Evolcodellama-7B进行微调的模型。

MODEL_ID = "mlabonne/EvolCodeLlama-7b"# Download model
!git lfs install
!git clone https://huggingface.co/{MODEL_ID}

这一步可能需要一些时间。完成后,我们需要将权重转换为GGML FP16格式。

MODEL_NAME = MODEL_ID.split('/')[-1]# Convert to fp16
fp16 = f"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin"
!python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile {fp16}

最后,我们可以使用一种或几种方法对模型进行量化。在这种情况下,我们将使用我之前推荐的Q4_K_M和Q5_K_M方法。这是唯一需要GPU的步骤。

QUANTIZATION_METHODS = ["q4_k_m", "q5_k_m"]for method in QUANTIZATION_METHODS:qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{method.upper()}.gguf"!./llama.cpp/quantize {fp16} {qtype} {method}

我们的两个量化模型现在可以进行推理了。我们可以检查bin文件的大小,看看我们压缩了多少。FP16的内存为13.5 GB, Q4_K_M 的内存为4.08 GB(比前者小3.3倍),Q5_K_M 的内存为4.78 GB(比后者小2.8倍)。

让我们使用llama.cpp来有效地运行它们。由于我们使用的是带有16gb VRAM的GPU,所以我们可以将每一层都卸载到GPU上。在本例中,它表示35层(7b参数模型),因此我们将使用-ngl 35参数。在下面的代码块中,我们还将输入一个提示符和我们想要使用的量化方法。

import osmodel_list = [file for file in os.listdir(MODEL_NAME) if "gguf" in file]prompt = input("Enter your prompt: ")
chosen_method = input("Name of the model (options: " + ", ".join(model_list) + "): ")# Verify the chosen method is in the list
if chosen_method not in model_list:print("Invalid name")
else:qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{method.upper()}.gguf"!./llama.cpp/main -m {qtype} -n 128 --color -ngl 35 -p "{prompt}"

让我们问使用Q5_K_M方法 “Write a Python function to print the nth Fibonacci numbers”。如果我们查看日志,我们可以通过“ lm_load_tensors: offloaded 35/35 layers to GPU”的行,成功地确认我们成功地卸载了我们的图层。这是模型生成的代码:

def fib(n):if n == 0 or n == 1:return nreturn fib(n - 2) + fib(n - 1)for i in range(1, 10):print(fib(i))

这不是一个非常复杂的提示符,但它很快就成功地生成了一段可工作的代码。使用llama.cpp,您可以使用交互模式(-i标志)将本地LLM用作终端中的助手。请注意,这也适用于带有苹果金属性能着色器(MPS)的macbook,这是运行llm的绝佳选择。

最后,我们可以将量化的模型推向带有“ -gguf”后缀的Hugging Face Hub 的新存储库。首先,让我们登录并修改以下代码块以匹配您的用户名。您可以在Google Colab的“ Secrets”选项卡中输入Hugging Face token (https://huggingface.co/settings/tokens) 。我们使用laster_patterns参数仅上传gGGUF模型,而不是整个目录。

!pip install -q huggingface_hub
from huggingface_hub import create_repo, HfApi
from google.colab import userdata# Defined in the secrets tab in Google Colab
hf_token = userdata.get('huggingface')api = HfApi()
username = "mlabonne"# Create empty repo
create_repo(repo_id = f"{username}/{MODEL_NAME}-GGUF",repo_type="model",exist_ok=True,token=hf_token
)# Upload gguf files
api.upload_folder(folder_path=MODEL_NAME,repo_id=f"{username}/{MODEL_NAME}-GGUF",allow_patterns=f"*.gguf",token=hf_token
)

我们已经成功地将GGML模型量化、运行并推送到拥抱脸中心!在下一节中,我们将探讨GGML如何实际量化这些模型。

使用GGML进行量化

GGML量化权重的方式不像GPTQ那样复杂。基本上,它将值块分组并将其舍入到较低的精度。一些技术,如Q4_K_M和Q5_K_M,对关键层实现了更高的精度。在这种情况下,除了一半 attention.wv and feed_forward.w2 的tensor之外,每个权重都以4位精度存储。实验证明,这种混合精度在精度和资源使用之间取得了很好的平衡。

如果我们查看一下ggml.c文件,我们可以看到这些块是如何定义的。例如,块q40结构定义为

#define QK4_0 32
typedef struct {ggml_fp16_t d;          // deltauint8_t qs[QK4_0 / 2];  // nibbles / quants
} block_q4_0;

在GGML中,权重以块的形式处理,每个块由32个值组成。对于每个块,从最大的权重值派生出一个比例因子(delta)。然后对块中的所有权重进行缩放、量子化和有效打包以进行存储(小块)。这种方法大大减少了存储需求,同时允许在原始权重和量化权重之间进行相对简单和确定的转换。

现在我们对量化过程有了更多的了解,我们可以将结果与NF4和GPTQ进行比较。

NF4 vs. GGML vs. GPTQ

哪种技术更适合4位量化/要回答这个问题,我们需要介绍运行这些量化llm的不同后端。对于GGML模型,使用q4km模型的lama.cpp是可行的方法。对于GPTQ模型,我们有两种选择:AutoGPTQ或ExLlama。最后,NF4模型可以直接在具有-load-in-4bit标志的transformers中运行。

Oobabooga在一篇优秀的博客文章中进行了多个实验,比较了不同模型的困惑度(越低越好)。
在这里插入图片描述
基于这些结果,我们可以说GGML模型在困惑方面具有略有优势。差异不是特别重要,这就是为什么最好以令牌/秒为单位专注于生成速度的原因。最好的技术取决于您的GPU:如果您有足够的VRAM适合整个量化模型,则使用Exllama的GPTQ将是最快的。如果不是这种情况,您可以卸载一些层,并使用Llama.cpp使用GGML型号来运行LLM。

结论

在本文中,我们介绍了GGML库和新的GGUF格式来有效地存储这些量化模型。我们用它来量化不同格式的Llama模型(Q4_K_M和Q5_K_M),然后运行GGML模型并将bin文件推送到hug Face Hub。最后,我们深入研究了GGML的代码,以了解它实际上是如何量化权重的,并将其与NF4和GPTQ进行了比较。

量化是通过降低运行LLM的成本来实现LLM的强大载体。在未来,混合精度和其他技术将不断提高我们可以通过量化权重实现的性能。在那之前,我希望你喜欢阅读这篇文章,并学到一些新的东西。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/705712.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

多模态表征—CLIP及中文版Chinese-CLIP:理论讲解、代码微调与论文阅读

我之前一直在使用CLIP/Chinese-CLIP,但并未进行过系统的疏导。这次正好可以详细解释一下。相比于CLIP模型,Chinese-CLIP更适合我们的应用和微调,因为原始的CLIP模型只支持英文,对于我们的中文应用来说不够友好。Chinese-CLIP很好地…

Linux使用Docker部署在线协作白板WBO并结合内网穿透发布公网远程访问

文章目录 前言1. 部署WBO白板2. 本地访问WBO白板3. Linux 安装cpolar4. 配置WBO公网访问地址5. 公网远程访问WBO白板6. 固定WBO白板公网地址 前言 WBO在线协作白板是一个自由和开源的在线协作白板,允许多个用户同时在一个虚拟的大型白板上画图。该白板对所有线上用…

【Vue3】插槽使用和animate使用

插槽使用 插槽slot匿名插槽具名插槽插槽作用域简写 动态插槽transition动画组件自定义过渡class类名如何使用animate动画库组件动画生命周期appear transition- group过渡列表 插槽slot 插槽就是子组件中提供给父组件使用的一个占位符父组件可以在这个占位符智能填充任何模板代…

SpringBoot -【BeanPostProcessor】基础使用及应用场景

BeanPostProcessor应用与优化 1. 引言 在现代软件开发中,企业开发面临着越来越复杂的系统架构和业务需求。随着项目规模的扩大和技术栈的增多,需要更高效的工具来应对这些挑战,并确保代码的可维护性和扩展性。 在这样的背景下,Be…

滴滴在合规宽限期内不能出车,滴滴平台会怎么处罚

滴滴合规宽限期内违规出车,平台严惩不贷! 滴滴合规政策回顾 滴滴出行作为国内领先的出行平台,始终致力于为用户提供安全、合规的出行服务。为了保障乘客权益,滴滴对司机和车辆都有严格的合规要求。在合规宽限期内,滴…

MySQL的SQL语句

1.MySQL连接 连接命令一般是这样写的 mysql -h$ip -P$port -u$user -p比如:mysql -h127.0.0.1 -P3306 -uroot -p -h 指定连接的主机地址;-P 指定连接端口号;-u 指定用户名 -p指定用户名密码 2.SQL分类 DDL(Data Definition Language) 数据定义语言&…

动态规划的时间复杂度优化

作者推荐 视频算法专题 本文涉及知识点 动态规划汇总 优化动态规划的时间复杂度,主要有如下几种: 一,不同的状态表示。 比如:n个人,m顶帽子。 第一种方式:dp[i][mask] ,i表示前i个人已经选择帽子&…

再见,Visual Basic——曾经风靡一时的编程语言

2020年3月,微软团队宣布了对Visual Basic(VB)的“终审判决”:不再进行开发或增加新功能。这意味着曾经风光无限的VB正式退出了历史舞台。 VB是微软推出的首款可视化编程软件,自1991年问世以来,便受到了广大…

国际生物发酵产品技术展2024-齐力控股

参展企业介绍 齐力控股集团凭借在此领域多年的生产经验,为客户提供各种优质的产品。齐力控股集团与世界同步的生产宗旨,确立完整的角色定位和明确方向,向大众传递本公司的营销特点和服务模式。本公司是一家集科研、生产为一体的现代企业&…

如何进行Appium实现移动端UI自动化测试?

🍅 视频学习:文末有免费的配套视频可观看 🍅 关注公众号【互联网杂货铺】,回复 1 ,免费获取软件测试全套资料,资料在手,涨薪更快 Appium是一个开源跨平台移动应用自动化测试框架。 既然只是想学…

瑞_Redis_Redis客户端

文章目录 1 Redis客户端1.1 Redis命令行客户端1.2 图形化桌面客户端1.2.1 资源准备1.2.2 安装1.2.3 建立连接 🙊 前言:本文章为瑞_系列专栏之《Redis》的基础篇的Redis客户端章节。由于博主是从B站黑马程序员的《Redis》学习其相关知识,所以本…

Spring11、整合Mybatis

11、整合Mybatis 步骤&#xff1a; 导入相关jar包 junit <dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version> </dependency> mybatis <dependency><groupId>org.my…

Qt QWidget 简约美观的加载动画 第二季

&#x1f603; 第二季来啦 &#x1f603; 简约的加载动画,用于网络查询等耗时操作时给用户的提示. 这是最终效果: 一共只有三个文件,可以直接编译运行 //main.cpp #include "LoadingAnimWidget.h" #include <QApplication> #include <QVBoxLayout> #i…

如何保护企业免受人工智能网络钓鱼攻击

文章目录 前言一、生成式人工智能带来了新的网络安全威胁二、人工智能将使网络钓鱼攻击变得更加危险三、企业如何阻止人工智能驱动的网络钓鱼四、网络钓鱼模拟确保责任感和适应性前言 网络钓鱼是网络犯罪分子社会工程武器库中的超级武器。网络钓鱼尤其危险,因为它是网络犯罪分…

Redis 管道详解

Redis 管道 关键词&#xff1a;Pipeline Pipeline 简介 Redis 是一种基于 C/S 模型以及请求/响应协议的 TCP 服务。通常情况下&#xff0c;一个 Redis 命令的请求、响应遵循以下步骤&#xff1a; 客户端向服务端发送一个查询请求&#xff0c;并监听 Socket 返回&#xff08…

美创科技荣获“2023年网络安全国家标准优秀实践案例”

近日&#xff0c;全国网络安全标准化技术委员会正式公布2023年网络安全国家标准优秀实践案例获奖名单。 杭州美创科技股份有限公司&#xff08;以下简称&#xff1a;美创科技&#xff09;申报的“GB/T 20281-2020《信息安全技术 防火墙安全技术要求和测试评价方法》在政企领域数…

【监督学习之支持向量机(SVM)】

曾梦想执剑走天涯&#xff0c;我是程序猿【AK】 目录 简述概要知识图谱基本原理支持向量线性SVM与非线性SVM优化问题软间隔与正则化SVM的应用实现 简述概要 了解监督学习-支持向量机&#xff08;SVM&#xff09; 知识图谱 支持向量机&#xff08;Support Vector Machine&…

visual stdio 使用ATL简单使用COM组件

先试用visual stdio创建ATL项目 选择第一个创建ATL简单对象 ProgId也需要添加一下&#xff0c;默认创建完之后添加方法 STDMETHODIMP AddNumber(LONG __num, LONG* result);添加定义 STDMETHODIMP_(HRESULT __stdcall) CATLSimpleObject::AddNumber(LONG __num, LONG* r…

LASSO算法

LASSO (Least Absolute Shrinkage and Selection Operator) 是一种回归分析的方法&#xff0c;它能够同时进行变量选择和正则化&#xff0c;以增强预测准确性和模型的解释性。LASSO通过在损失函数中加入一个L1惩罚项来实现这一点。该惩罚项对系数的绝对值进行约束。 基本概念 …

【深度学习笔记】深度卷积神经网络——AlexNet

深度卷积神经网络&#xff08;AlexNet&#xff09; 在LeNet提出后&#xff0c;卷积神经网络在计算机视觉和机器学习领域中很有名气。但卷积神经网络并没有主导这些领域。这是因为虽然LeNet在小数据集上取得了很好的效果&#xff0c;但是在更大、更真实的数据集上训练卷积神经网…