机器学习和深度学习都是用于图片分类任务的强大工具,但它们采用的方法和原理有所不同。下面我将分别解释这两种技术是如何应用于图片分类的,并着重讨论深度学习中的卷积概念。
机器学习在图片分类中的应用
传统的机器学习方法在进行图片分类时,通常依赖于手动提取的特征。这些特征可能是图像的颜色、纹理、形状等低级特征,或者是通过更复杂的方法(如SIFT、SURF、HOG等)提取的特征。提取特征后,使用分类器(如支持向量机SVM、决策树、随机森林等)对这些特征进行学习和分类。
然而,这种方法的一个主要缺点是它依赖于特征工程,即需要专家知识来设计和选择好的特征。此外,手动设计的特征可能无法捕捉到图像中的高级抽象概念,从而限制了分类器的性能。
你看到的图片,和机器看到的图片,是不同的概念。
要训练出一个分类器,特征点过多,如果是640*320的PRG图片,有640*320*3≈61万个特征。
手动提取特征,上图的+号,代表是汽车的像素,上图的-,代表不是,手工进行特征提取和分类标注。
深度学习在图片分类中的应用
深度学习,特别是卷积神经网络(Convolutional Neural Networks,CNN),在图片分类任务中取得了显著的突破。与传统的机器学习不同,深度学习能够自动从原始图像中学习层次化的特征表示。
卷积的概念
卷积是深度学习中一个核心概念,特别是在处理图像数据时。在卷积神经网络中,卷积层负责执行卷积操作,以捕捉图像中的局部特征。
- 局部感知:在全连接网络中,每个神经元与前一层中的所有神经元相连。然而,在图像中,像素之间的相关性往往是局部的。因此,卷积神经网络采用局部感知的策略,即每个神经元只与输入图像的一个局部区域相连。这种连接模式通过卷积核(或滤波器)实现,卷积核在图像上滑动并计算局部区域的加权和。
- 权值共享:在卷积层中,同一卷积核会应用于整个图像,这意味着图像的不同位置共享相同的权值。这种权值共享的策略大大减少了网络中的参数数量,降低了过拟合的风险,并使得网络能够学习到与位置无关的特征。
- 特征映射:当卷积核应用于输入图像时,它会生成一个新的二维特征映射(或称为激活映射),该映射突出了图像中与卷积核匹配的特定特征。通过堆叠多个卷积层,网络能够学习到更加复杂和抽象的特征表示。
在卷积神经网络中,除了卷积层外,通常还包括池化层(用于降低特征映射的维度和增加空间不变性)、全连接层(用于分类)以及其他正则化技术(如Dropout、批量归一化等)。这些组件共同工作,使得CNN能够在图像分类任务中达到很高的性能。
深度学习和机器学习不同,是端到端的输入输出。
在线性系统里,卷积用来描述输入信息,脉冲响应和输入信息的关系。
卷积用图来表示,就非常清晰了。
移动窗口,矩阵运算“卷积和”,5*5,转换为3*3。
3*3是卷积层(卷积和)来扫描这张图,小数字是卷积和的权重。
局部像素都被同一个卷积和扫描,每个像素权重是一样的,权重共享。
权重共享:
权重共享是指在深度学习模型中多个位置或层次上使用相同的参数或权重。这意味着不同的权重共享单元将使用相同的参数来计算其输出。通过共享参数,模型可以在不同的位置共享信息,并减少整体模型的参数数量。
权重共享的原理基于一种假设,即在某些任务中,不同位置或层级的特征具有一定的相似性。例如,在图像分类任务中,对象的局部特征可以通过共享权重来识别。由于对象的不变性和相似性,许多图像区域可能具有共享参数所需的相同特征提取能力。因此,通过共享权重,模型可以更好地捕捉到这些共享特征,并以更简洁的方式表示数据。
权重共享在深度学习中有多种应用,其中最常见的是卷积神经网络(CNNs)。在CNN中,卷积层采用权重共享的方式,通过滑动窗口在图像上提取特征。通过共享滤波器参数,卷积层可以在整个输入图像上共享特征提取能力,从而大大减少了参数数量和计算复杂度。这使得CNN成为处理图像和视觉任务的强大工具。
权重共享的好处不仅仅体现在减少计算和存储需求上。它还有助于防止模型过拟合,因为共享参数可以限制模型的复杂性。此外,权重共享还可以加快模型的收敛速度,因为参数共享可以使梯度信息更好地在模型中传播。
然而,权重共享也存在一些局限性。在某些情况下,不同位置或层级的特征可能具有较大的差异性,此时强制共享权重可能会导致模型性能下降。因此,在实际应用中需要根据具体任务和数据特性来选择合适的权重共享策略。
除了CNN,权重共享还可以应用于其他类型的神经网络模型,如循环神经网络(RNN)等。此外,在自编码器、生成对抗网络(GANs)等模型中也可以通过权重共享来提取和生成数据,加强训练和生成过程。
总之,权重共享是一种有效的深度学习技术,可以在减少模型参数数量的同时提高模型的性能和效率。在实际应用中,需要根据具体任务和数据特性来选择合适的权重共享策略,并结合其他优化技术来进一步提高模型的性能。
生成一个新的特征图。就是后面的3*3的小图。
机器学习,就是利用算法使计算机能够像人一样从数据中挖掘信息。
而深度学习,则是端到端。相比其他方法参数更多、模型更复杂,使得数据对模型理解更深、更智能。
总的来说,深度学习通过自动学习层次化的特征表示,避免了传统机器学习方法中繁琐的特征工程过程。而卷积神经网络作为深度学习的一种重要架构,在图像分类等视觉任务中表现出了卓越的性能。