解析Hadoop三大核心组件:HDFS、MapReduce和YARN

目录

  • Hadoop
    • Hadoop的优势
  • Hadoop的组成
    • HDFS架构设计
    • Yarn架构设计
    • MapReduce架构设计
  • 总结

在大数据时代,Hadoop作为一种开源的分布式计算框架,已经成为处理大规模数据的首选工具。它采用了分布式存储和计算的方式,能够高效地处理海量数据。Hadoop的核心由三大组件组成:HDFS、MapReduce和YARN。本文将为您逐一介绍这三个组件。

Hadoop

Hadoop是一个开源的分布式计算和存储框架,主要解决海量数据的存储和海量数据的分析计算。

Hadoop的优势

  1. 高可扩展性:Hadoop可以轻松地扩展到大规模集群,并处理大量的数据。它采用分布式计算的方式,将工作负载分布在集群中的多个节点上,使得系统能够处理海量的数据和高并发请求。

  2. 高容错性:Hadoop具有高度的容错能力,即使在设备或任务发生故障的情况下,也能保持数据的完整性和系统的可用性。它通过数据的冗余复制和自动故障转移等机制,确保数据的安全和系统的稳定性。

  3. 高效性:通过并行处理和分布式计算,Hadoop能够实现快速的数据处理。它可以将大规模的数据分解为小的任务并在多个节点上并行执行,从而提高处理效率和速度。

  4. 处理多种数据类型:Hadoop可以处理各种类型的数据,包括结构化数据、半结构化数据和非结构化数据。它能够灵活地存储和处理数据,支持分布式存储和处理大规模的文本、图像、音频、视频等数据类型。

  5. 异构性:Hadoop支持不同类型的硬件和操作系统,并且能够与其他开源工具和框架无缝集成。它提供了统一的接口和API,使得用户可以用各种编程语言编写应用程序,并在Hadoop上运行。

  6. 成本效益:相比于传统的数据存储和处理方式,Hadoop具有较低的成本。它使用商业化的廉价硬件,可以通过纵向和横向扩展实现高性能和高可用性,降低了硬件和软件成本。


Hadoop的组成

HDFS架构设计

Hadoop分布式文件系统(Hadoop Distributed File System,HDFS)是Hadoop生态系统中的一个重要组成部分,是用于存储和处理大数据的分布式文件系统。

HDFS采用master/slave架构。一个HDFS集群是由一个Namenode和一定数目的Datanodes组成。Namenode是一个中心服务器,负责管理文件系统的名字空间(namespace)以及客户端对文件的访问。集群中的Datanode一般是一个节点一个,负责管理它所在节点上的存储。HDFS暴露了文件系统的名字空间,用户能够以文件的形式在上面存储数据。从内部看,一个文件其实被分成一个或多个数据块,这些块存储在一组Datanode上。Namenode执行文件系统的名字空间操作,比如打开、关闭、重命名文件或目录。它也负责确定数据块到具体Datanode节点的映射。Datanode负责处理文件系统客户端的读写请求。在Namenode的统一调度下进行数据块的创建、删除和复制。

在这里插入图片描述
其架构详细概述如下:

  1. NameNode(nn):
    NameNode是HDFS的主节点,负责管理整个文件系统的命名空间和数据块的元数据信息。它维护文件系统的目录结构、文件的安全权限信息和数据块的位置信息等。NameNode还处理客户端的文件系统操作请求,如文件的读写和块的创建、复制和删除等。

  2. DataNode(dn):
    DataNode是HDFS的工作节点,负责实际存储文件数据和执行文件系统操作的任务。每个DataNode负责管理一定数量的数据块,并定期向NameNode报告数据块的存储信息。DataNode还处理来自客户端和其他DataNode的读取和写入请求,以及数据块的复制和恢复等。

  3. 存储指定副本:
    HDFS中的文件被分成一系列的数据块,这些数据块会被复制到不同的Datanode上。根据副本配置参数,每个数据块在HDFS中会有多个副本,这样可以提高数据的可靠性和容错性。HDFS会尽量将这些副本存储在不同的机架、节点和硬盘上,以防止硬件故障或网络故障导致的数据丢失。

  4. 客户端(Client):
    客户端是使用HDFS的应用程序。它们通过与Namenode和Datanode进行通信来读取和写入文件。客户端向Namenode请求文件的元数据信息,根据元数据信息确定所需数据块的位置,并从Datanode获取数据。客户端还负责处理文件系统的操作,如创建、删除、重命名和移动文件等。


Yarn架构设计

YARN(Yet Another Resource Negotiator)的基本思想是将资源管理和作业调度/监视的功能拆分为单独的守护进程。这个想法是有一个全局的ResourceManager (RM)和每个应用的ApplicationMaster (AM)。应用程序可以是单个作业,也可以是作业DAG。它的架构设计如下:

在这里插入图片描述

  1. ResourceManager(资源管理器):
    ResourceManager是YARN集群的主节点,负责整个集群的资源管理和任务调度。它接收来自客户端、应用程序和NodeManager的资源请求,分配和调度集群中的资源。ResourceManager还负责监控集群的健康状态,处理故障和任务的重新分配,以确保高可用性和稳定性。

  2. NodeManager(节点管理器):
    NodeManager是YARN集群中每个节点上的组件,负责管理和监控该节点上的计算资源。NodeManager通过向ResourceManager注册自己的资源和容器信息,将自身纳入到集群的资源管理中。它负责启动和监控容器,接收来自ResourceManager的资源分配指令,并向ResourceManager报告计算资源的使用情况。

  3. ApplicationMaster(应用程序管理器):
    每个在YARN上运行的应用程序都会有一个ApplicationMaster。ApplicationMaster负责协调和管理应用程序的资源需求,与ResourceManager通信并向其申请资源。它还监控应用程序的运行状态和容器的健康度,并处理容器的启动、停止和失败等情况。ApplicationMaster执行应用程序的逻辑,将整个应用程序划分为一系列的任务,并与NodeManager通信来启动和管理任务的执行。

  4. Container(容器):
    在YARN中,任务被封装到一个个容器中。容器是对计算资源的抽象,它由ResourceManager分配给ApplicationMaster,并由ApplicationMaster分配给具体的任务执行。每个容器拥有自己的计算和存储资源,并在NodeManager上创建和运行任务相关的进程。容器提供了高度的隔离性和资源限制,确保应用程序之间不会相互干扰。


ResourceManager有两个主要组件:Scheduler和ApplicationsManager。

Scheduler负责将资源分配给各种正在运行的应用程序,这些应用程序受到熟悉的容量、队列等约束。Scheduler是纯粹的Scheduler,因为它不监视或跟踪应用程序的状态。此外,它不能保证重新启动由于应用程序故障或硬件故障而失败的任务。调度程序根据应用程序的资源需求执行调度功能;它是基于资源容器的抽象概念来实现的,资源容器包含了诸如内存、cpu、磁盘、网络等元素。

ApplicationsManager 负责接受作业提交、协商第一个容器来执行应用程序特定的 ApplicationMaster 并提供在失败时重新启动 ApplicationMaster 容器的服务。每个应用程序的 ApplicationMaster 负责与 Scheduler 协商适当的资源容器,跟踪其状态并监控进度。


MapReduce架构设计

MapReduce是一种分布式计算编程模型,用于处理大规模数据集。它的架构设计包括以下几个组件:

  1. JobTracker(作业调度器):
    JobTracker是MapReduce作业的主节点,负责整个作业的调度和执行。它接收来自客户端的作业请求,将作业划分为多个任务,并分配给各个TaskTracker进行执行。JobTracker还负责监控任务的进度和状态,处理任务的失败和重新分配,以确保作业的顺利运行。

  2. TaskTracker(任务执行器):
    TaskTracker是在每个集群节点上运行的组件,负责执行作业中的任务。它接收来自JobTracker的任务分配指令,并在该节点上启动和管理任务的执行。TaskTracker将任务划分为Map任务和Reduce任务,并负责处理任务的输入输出数据,以及任务的进度和状态更新。

  3. MapTask(映射任务):
    MapTask是MapReduce作业的计算阶段。每个MapTask从输入数据中抽取一部分数据,经过映射函数的处理后生成键值对(key-value pair)。MapTask独立进行执行,处理输入数据的分片,将处理后的中间结果写入本地磁盘。

  4. ReduceTask(归约任务):
    ReduceTask是MapReduce作业的归约阶段。每个ReduceTask接收来自Mapper的输出结果,并按照键进行归约操作,将具有相同键的数据进行合并和计算生成最终结果。ReduceTask也独立执行,将归约后的结果写入最终输出文件。

  5. 分布式文件系统:
    MapReduce框架通常与分布式文件系统(如HDFS)结合使用,用于存储输入数据和输出结果。分布式文件系统提供了高可靠性和容错性,并支持数据的高并发访问。

通过这种架构设计,MapReduce就可以实现任务的分布式执行和并行计算,并能够高效处理大规模数据集。
Map阶段将计算任务分布到不同的节点上进行并行处理,Reduce阶段将中间结果进行合并和计算生成最终结果。这种框架设计适用于各种数据处理场景,如数据排序、数据过滤、数据聚合等。同时,MapReduce框架也提供了一些其他功能,如容错性、动态负载均衡和数据本地化等,以提高作业的执行效率和数据处理速度。


总结

Hadoop的三大核心组件HDFS、MapReduce和YARN共同构成了一个完整的分布式计算框架。HDFS提供了高可靠性的分布式文件存储,MapReduce实现了高效的并行计算,而YARN则管理着集群的资源和任务。通过这三个组件的配合,Hadoop能够处理大规模数据集的存储、计算和调度,为大数据处理提供了强大的支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/704988.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pod调度策略 标签管理 资源配额与限额 全局资源配额与限额策略,

打分也是基于可调度节点进行打分资源情况. 指定多个节点,会进行覆盖其之前节点名称 --- kind: Pod apiVersion: v1 metadata:name: myhttp spec:nodeName: node-0001 # 基于节点名称进行调度containers:- name: apacheimage: myos:httpd 基于节点名称的调度策略 标签与调…

数据可视化--了解数据可视化和Excel数据可视化

目录 1.1科学可视化: 可视化是模式、关系、异常 1.2三基色原理: 三基色:红色、绿色和蓝色 1.3Excel数据可视化 1.3.1 excel数据分析-13个图表可视化技巧 1.3.2 excel数据分析-28个常用可视化图表(video) 1.3.3Excel可视化…

康复训练day2——2024牛客寒假集训营6

一道很好的构造题,受益匪浅。 链接:F-命运的抉择_2024牛客寒假算法基础集训营6 (nowcoder.com)​​​​​​ 题意: 题解 (并查集 思维): 首先将存在1的情况特判掉,我们的数组的元素都是> 2的…

2024-02-26(Spark,kafka)

1.Spark SQL是Spark的一个模块,用于处理海量结构化数据 限定:结构化数据处理 RDD的数据开发中,结构化,非结构化,半结构化数据都能处理。 2.为什么要学习SparkSQL SparkSQL是非常成熟的海量结构化数据处理框架。 学…

在having、select子句中使用子查询

目录 在having子句中使用子查询 统计出部门平均工资高于公司平均工资的部门编号、平均工资、部门人数 在select子句中使用子查询 查询每个员工的编号、姓名、职位、部门名称 Oracle从入门到总裁:https://blog.csdn.net/weixin_67859959/article/details/135209645 在havin…

销售线索获取 如何查找更多的销售线索平台

在进行销售工作时,寻找潜在客户和销售线索是非常重要的。只有及时地发现客户的需求和问题,才能更好地进行销售和提供服务。然而,在如今的市场环境中,客户的信息被广泛地分散在各个渠道和媒介上,如果仅靠人工搜索和整理…

如何优化Node.js应用的性能

随着Node.js在Web开发领域的广泛应用,越来越多的开发者开始关注如何优化Node.js应用的性能。优化Node.js应用的性能可以提升应用的响应速度,降低资源消耗,提升用户体验。在本文中,我们将探讨一些优化Node.js应用性能的方法和技巧。…

Nginx重写功能和反向代理

目录 一、重写功能rewrite 1. ngx_http_rewrite_module模块指令 1.1 if 指令 1.2 return 指令 1.3 set 指令 1.4 break 指令 2. rewrite 指令 3. 防盗链 3.1 实现盗链 3.2 实现防盗链 4. 实用网址 二、反向代理 1. 概述 2. 相关概念 3. 反向代理模块 4. 参数配置…

亿道丨三防平板丨如何从多方面选择合适的三防加固平板?

在如今这个信息爆炸的时代,移动设备已经成为我们生活和工作的必备工具。然而,在一些特殊的场合中,普通的平板电脑可能无法满足需求,比如工厂车间、野外作业、极端天气等环境下。此时,三防平板就成了不二之选。那么&…

SpringCloud-Docker安装与详解

Docker 是一款强大的容器化平台,通过其轻量级的容器技术,使应用程序的开发、部署和管理变得更加便捷和高效。本文将深入探讨 Docker 的安装过程,并详细解析其基本概念、组件及常用命令,以帮助读者充分理解和熟练使用 Docker。企业…

mac安装zookeeper

下载地址: http://archive.apache.org/dist/zookeeper/ 注意:由于Zookeeper从3.5.5版本开始,带有bin名称的包才是我们想要的下载可以直接使用的里面有编译后的二进制的包,而之前的普通的tar.gz的包里面是只是源码的包无法直接使…

Laravel04 eloquent

eloquent 1. eloquent2. 创建eloquent model 以及 取数据 1. eloquent 文档地址: https://learnku.com/docs/laravel/8.x/eloquent/9406 下面是我们,通过laravel的DB类从数据库中获取了post记录,那么有没有可能我们直接获取一个post对象&am…

Ps:索引颜色模式

Ps菜单:图像/模式/索引颜色 Image/Mode/Indexed Color 索引颜色 Indexed Color模式可生成最多 256 种颜色的 8 位图像文件。 这种颜色的限制使得索引颜色模式的图像文件相比于全彩图像(如 RGB 颜色模式下的图像)具有更小的文件大小&#xff0…

使用mumu模拟器开启调试安卓pwa程序环境,配置谷歌环境,并增加pwa安卓/苹果/PC电脑安装流程

环境配置 当你想开发pwa程序时,手上没有安卓手机怎么办?使用mumu安卓模拟器也是可以的,使用安卓模拟器后,可能自带的浏览器不支持pwa,还需要安装chrom浏览器,当你安装好chrom浏览器后,打开又提…

利用项目管理软件规划的成功之路

项目开发对于任何类型的项目都是一个有用的过程。软件开发项目、建筑项目、运输项目和变更管理项目都可以从这种方法提供的结构、指导和策略中获益。 项目开发涉及规划项目时间表、投资资源以及安排团队成员的时间。与项目管理一样,项目开发贯穿项目始终&#xff0…

用 React 实现搜索 GitHub 用户功能

用 React 实现搜索 GitHub 用户功能 在本篇博客中,我们将介绍如何在 React 应用中搜索 GitHub 用户并显示他们的信息。 创建 React 应用 首先,我们使用 Create React App 创建一个新的 React 应用。Create React App 是一个快速搭建 React 项目的工具…

MATLAB练习题:并行计算的parfor循环

​讲解视频:可以在bilibili搜索《MATLAB教程新手入门篇——数学建模清风主讲》。​ MATLAB教程新手入门篇(数学建模清风主讲,适合零基础同学观看)_哔哩哔哩_bilibili 在MATLAB中,parfor(Parallel for&…

30-k8s集群的七层代理-ingress资源(进阶知识)

一、ingress概述 1,引发问题 目前使用svc资源做网络暴露,使用nodeport类型,一个业务对应一个宿主机端口,那么如果业务多了,所占用的宿主机端口也就多了,虽然说宿主机端口一般情况下都是够用的,…

python自动化管理和zabbix监控网络设备(有线网络和路由配置部分)

目录 目录 一、拓扑图 二、core-sw1 三、core-sw2 四、sum-sw1 五、sum-sw2 六、FW1 七、DMZ-SW1 结语 一、拓扑图 二、core-sw1 sys sysname core-sw1 vlan batch 10 20 30 40 50 60 100 vlan batch 200 210 220 230 240 250 stp region-configuration region-name…

【Java设计模式】一、工厂模式、建造者模式、原型设计模式

文章目录 1、简单工厂模式2、工厂方法模式3、抽象工厂模式4、建造者模式5、原型设计模式 设计模式即总结出来的一些最佳实现。23种设计模式可分为三大类: 创建型模式:隐藏了创建对象的过程,通过逻辑方法进行创建对象,而不是直接n…