Python算法题集_实现 Trie [前缀树]

 Python算法题集_实现 Trie [前缀树]

  • 题208:实现 Trie (前缀树)
  • 1. 示例说明
  • 2. 题目解析
    • - 题意分解
    • - 优化思路
    • - 测量工具
  • 3. 代码展开
    • 1) 标准求解【定义数据类+默认字典】
    • 2) 改进版一【初始化字典+无额外类】
    • 3) 改进版二【字典保存结尾信息+无额外类】
  • 4. 最优算法
  • 5. 相关资源

本文为Python算法题集之一的代码示例

题208:实现 Trie (前缀树)

1. 示例说明

  • Trie(发音类似 “try”)或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。

    请你实现 Trie 类:

    • Trie() 初始化前缀树对象。
    • void insert(String word) 向前缀树中插入字符串 word
    • boolean search(String word) 如果字符串 word 在前缀树中,返回 true(即,在检索之前已经插入);否则,返回 false
    • boolean startsWith(String prefix) 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false

    示例:

    输入
    ["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
    [[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
    输出
    [null, null, true, false, true, null, true]解释
    Trie trie = new Trie();
    trie.insert("apple");
    trie.search("apple");   // 返回 True
    trie.search("app");     // 返回 False
    trie.startsWith("app"); // 返回 True
    trie.insert("app");
    trie.search("app");     // 返回 True
    

    提示:

    • 1 <= word.length, prefix.length <= 2000
    • wordprefix 仅由小写英文字母组成
    • insertsearchstartsWith 调用次数 总计 不超过 3 * 104

2. 题目解析

- 题意分解

  1. 本题是为自动补完、拼写检查等创造一个高效率的检索类
  2. 基本的设计思路迭代单词,每层用字典保存,同时还需要保存单词结尾信息【search检测结尾、startWith不检测】

- 优化思路

  1. 通常优化:减少循环层次

  2. 通常优化:增加分支,减少计算集

  3. 通常优化:采用内置算法来提升计算速度

  4. 分析题目特点,分析最优解

    1. 可以尝试使用默认字典defaultdict

    2. 本题都是小写字母,因此26个元素的字典就可以保存一个层级

    3. 所有单词字符都是ASCII码,Ord值都在0-127,因此128个元素的字典可以正常使用【超时测试用例,需要128一层】

    4. 可以考虑将单词结尾信息保存在字典中,用一个单词中不会出现的字符即可,比如’#’


- 测量工具

  • 本地化测试说明:LeetCode网站测试运行时数据波动很大【可把页面视为功能测试】,因此需要本地化测试解决数据波动问题
  • CheckFuncPerf(本地化函数用时和内存占用测试模块)已上传到CSDN,地址:Python算法题集_检测函数用时和内存占用的模块
  • 本题本地化超时测试用例自己生成,详见章节【最优算法】,需要安装和部署**NLTK**

3. 代码展开

1) 标准求解【定义数据类+默认字典】

使用默认字典,定位专门的数据类,使用类属性保存单词结尾信息

页面功能测试,马马虎虎,超过33%在这里插入图片描述

import CheckFuncPerf as cfpclass prenode:def __init__(self):self.chars = defaultdict(int)class Trie_base:def __init__(self):self.node = prenode()self.bEnd = Falsedef searchPrefix(self, prefix):tmpNode = selffor achar in prefix:ichar = ord(achar) - ord("a")if tmpNode.node.chars[ichar] == 0:return NonetmpNode = tmpNode.node.chars[ichar]return tmpNodedef insert(self, word):tmpNode = selffor achar in word:ichar = ord(achar) - ord("a")if tmpNode.node.chars[ichar] == 0:tmpNode.node.chars[ichar] = Trie_base()tmpNode = tmpNode.node.chars[ichar]tmpNode.bEnd = Truedef search(self, word):node = self.searchPrefix(word)return node is not None and node.bEnddef startsWith(self, prefix):return self.searchPrefix(prefix) is not NonetmpTrie = Trie_base()
result = cfp.getTimeMemoryStr(testTrie, tmpTrie, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))# 运行结果
函数 testTrie 的运行时间为 7127.62 ms;内存使用量为 373008.00 KB 执行结果 = 99

2) 改进版一【初始化字典+无额外类】

将字典数据和单词结尾信息都保存在节点类中,创建类同时初始化字典的128个元素【按题意只需26,本类已经按超时测试改写】

页面功能测试,马马虎虎,超过65%在这里插入图片描述

import CheckFuncPerf as cfpclass Trie_ext1:def __init__(self):self.data = [None] * 128self.bEnd = Falsedef searchPrefix(self, prefix):tmpnode = selffor achar in prefix:ichar = ord(achar)if not tmpnode.data[ichar]:return Nonetmpnode = tmpnode.data[ichar]return tmpnodedef insert(self, word):tmpnode = selffor achar in word:ichar = ord(achar)if not tmpnode.data[ichar]:tmpnode.data[ichar] = Trie_ext1()tmpnode = tmpnode.data[ichar]tmpnode.bEnd = Truedef search(self, word):tmpnode = self.searchPrefix(word)return tmpnode is not None and tmpnode.bEnddef startsWith(self, prefix):return self.searchPrefix(prefix) is not NonetmpTrie = Trie_ext1()
result = cfp.getTimeMemoryStr(testTrie, tmpTrie, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))# 运行结果
函数 testTrie 的运行时间为 5857.32 ms;内存使用量为 793700.00 KB 执行结果 = 99

3) 改进版二【字典保存结尾信息+无额外类】

在字典中保存单词结尾信息,将字典数据保存在节点类中,创建类时不初始化字典

页面功能测试,性能卓越,超越96%在这里插入图片描述

import CheckFuncPerf as cfpclass Trie_ext2:def __init__(self):self.tree = {}def insert(self, word):tree = self.treefor achar in word:if achar not in tree:tree[achar] = {}tree = tree[achar]tree["#"] = "#"def search(self, word):tree = self.treefor achar in word:if achar not in tree:return Falsetree = tree[achar]return "#" in treedef startsWith(self, prefix):tree = self.treefor achar in prefix:if achar not in tree:return Falsetree = tree[achar]return TruetmpTrie = Trie_ext2()
result = cfp.getTimeMemoryStr(testTrie, tmpTrie, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))# 运行结果
函数 testTrie 的运行时间为 1670.38 ms;内存使用量为 146692.00 KB 执行结果 = 99

4. 最优算法

根据本地日志分析,最优算法为第3种方式【字典保存结尾信息+无额外类】Trie_ext2

本题大概有以下结论:

  1. 独立的变量,如果能保存在字典结构里,减少独立的变量数,可以提升性能
  2. 数据集的默认初始化可能会扩大内存使用,同时数据量过大、内存过大也拖累性能
import random
from nltk.corpus import words
word_list = list(words.words())
def testTrie(aTrie, actions):for act in actions:if act[0]==1:   # insertaTrie.insert(act[1])elif act[0]==2: # searchaTrie.search(act[1])elif act[0]==3: # startsWithaTrie.startsWith(act[1])return 99
import random
actions = []
iLen = 1000000
for iIdx in range(iLen):actions.append([random.randint(1, 3), random.choice(word_list)])
tmpTrie = Trie_base()
result = cfp.getTimeMemoryStr(testTrie, tmpTrie, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))
tmpTrie = Trie_ext1()
result = cfp.getTimeMemoryStr(testTrie, tmpTrie, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))
tmpTrie = Trie_ext2()
result = cfp.getTimeMemoryStr(testTrie, tmpTrie, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))# 算法本地速度实测比较
函数 testTrie 的运行时间为 7127.62 ms;内存使用量为 373008.00 KB 执行结果 = 99
函数 testTrie 的运行时间为 5857.32 ms;内存使用量为 793700.00 KB 执行结果 = 99
函数 testTrie 的运行时间为 1670.38 ms;内存使用量为 146692.00 KB 执行结果 = 99

5. 相关资源

本文代码已上传到CSDN,地址:**Python算法题源代码_LeetCode(力扣)_**实现Trie(前缀树)

一日练,一日功,一日不练十日空

may the odds be ever in your favor ~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/703194.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenGL-ES 学习(5)---- GPU 基础知识

目录 Arm GPU 架构说明移动系统的特点渲染管线渲染管线简介几何处理像素处理 渲染管线的硬件IMR(立即渲染)TBR(Tile Based Rendering) 渲染硬件的实现CPUGPU 设计 Mali Shadercore重要补充 Arm GPU 架构说明 UtGard: 比较早的架构,支持到 OpenGL-ES 2.0&#xff0c;VertexShad…

【小尘送书-第十四期】《高效使用Redis:一书学透数据存储与高可用集群》

大家好&#xff0c;我是小尘&#xff0c;欢迎你的关注&#xff01;大家可以一起交流学习&#xff01;欢迎大家在CSDN后台私信我&#xff01;一起讨论学习&#xff0c;讨论如何找到满意的工作&#xff01; &#x1f468;‍&#x1f4bb;博主主页&#xff1a;小尘要自信 &#x1…

Vue组件间的通信详解

在Vue中&#xff0c;组件之间的通信可以有多种方式实现&#xff1a; Props 和 $emit Props&#xff1a;父组件向子组件传递数据时&#xff0c;通过属性绑定&#xff08;v-bind 或 :&#xff09;将数据作为属性传给子组件。子组件需要在props选项中声明它接收的属性列表。**emit…

Base64 编码 lua

Base64 编码 -- Base64 字符表 local base64_chars { A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,…

文献阅读:Large Language Models are Null-Shot Learners

文献阅读&#xff1a;Large Language Models are Null-Shot Learners 1. 文章简介2. 方法介绍3. 实验考察 & 结论 1. 基础实验 1. 实验设计2. 实验结果 2. 消融实验 1. 小模型上的有效性2. ∅CoT Prompting3. 位置影响4. 组成内容 4. 总结 & 思考 文献链接&#xff1…

gitlab 忘记root密码,修改root密码

1.使用root用户登录服务器 2.进入GitLab的安装目录&#xff0c;一般是 /opt/gitlab/ 3.执行以下命令重置密码&#xff1a; sudo gitlab-rails consoleuser User.where(id: 1).first user.password new password user.password_confirmation new password user.save! 退出…

openEuler22.03 LTS中配置vsftp服务器

一、说明 配置环境&#xff1a;VMware虚拟机中安装openEuler 22.03 LTS系统&#xff0c;并确保该Linux服务器能访问Internet。 FTP服务器的身份认证模式 vsftpd服务提供以下3种身份认证模式&#xff0c;前两种模式比较常见&#xff0c;第3种模式是vsftpd的特有的服务模式。 …

代码随想录算法刷题训练营day23

代码随想录算法刷题训练营day23&#xff1a;LeetCode(669)修剪二叉搜索树、LeetCode(108)将有序数组转换为二叉搜索树、LeetCode(538)把二叉树转化为累加树 LeetCode(669)修剪二叉搜索树 题目 代码 /*** Definition for a binary tree node.* public class TreeNode {* …

【Vue】Vue双向绑定原理

【Vue】Vue双向绑定原理 定义&#xff1a;数据变化视图会自动更新&#xff0c;视图变化数据也会更新原理&#xff1a;通过数据劫持和发布订阅模式实现的实现 定义&#xff1a;数据变化视图会自动更新&#xff0c;视图变化数据也会更新 比如说&#xff0c;当在输入框输入文字时…

SocketWeb实现小小聊天室

SocketWeb实现小小聊天室 消息推送的常见方式轮询长轮询SSE&#xff08;server-sent event&#xff09;&#xff1a;服务器发送事件WebSocketWebSocket简介WebSocket API 实现小小聊天室实现流程消息格式客户端-->服务端服务端-->客户端 消息推送的常见方式 轮询 浏览器…

图书推荐|Windows Server 2022 Active Directory配置实战

十几年磨一剑&#xff0c;畅销书第10次升级 本书简介 《Windows Server 2022 Active Directory配置实战》是微软技术专家最新推出的Windows Server 2022两卷力作中的Active Directory配置实战篇。 《Windows Server 2022 Active Directory配置实战》延续了作者一贯的写作风格…

高可用k8s集群(k8s-1.29.2)

0、高可用k8s集群&#xff08;k8s-1.29.2&#xff09; 文章目录 0、高可用k8s集群&#xff08;k8s-1.29.2&#xff09;0、环境准备&#xff08;centos-7.9、rocky-9.3 环境配置调优&#xff09;1、nginx keepalived&#xff08;负载均衡高可用&#xff09;1.1、nginx1.2、keep…

MATLAB环境下基于洗牌复杂演化的图像分割算法

智能优化算法因其较强的搜索解能力而得到了大量的应用&#xff0c;在这些计算智能算法中&#xff0c;群体智能优化算法因其高效性、有效性以及健壮性等优点而得到了科研人员的青睐。这类算法借鉴生物群体的合作特性&#xff0c;主要解决大规模复杂的分布式问题&#xff0c;研究…

第7.1章:StarRocks性能调优——查询分析

目录 一、查看查询计划 1.1 概述 1.2 查询计划树 1.3 查看查询计划的命令 1.3 查看查询计划 二、查看查询Profile 2.1 启用 Query Profile 2.2 获取 Query Profile 2.3 Query Profile结构与详细指标 2.3.1 Query Profile的结构 2.3.2 Query Profile的合并策略 2.…

WPF Style样式设置

1.本window设置样式 <Window x:Class"WPF_Study.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schemas.microsoft.com/expressi…

开源软件:彻底改变软件产业的趋势

开源软件:彻底改变软件产业的趋势 开源软件的兴起彻底改变了软件产业的面貌。作为一种软件开发和许可的新模式,开源软件为用户和开发者带来了前所未有的便利。 开源软件的优势 与传统的商业软件相比,开源软件具有以下独特优势: 低成本:开源软件可以免费获取源代码,大大降低了…

CentOS删除除了最近5个JAR程序外的所有指定Java程序

帮我写一个shell脚本,ps -eo pid,lstart,cmd --sort=-start_time | grep "pgz-admin"查到的结果,返回的所有进程PID,第六个之上的,全部kill 当然,你可以创建一个简单的Shell脚本来完成这个任务。以下是一个例子: #!/bin/bash# 获取包含 "pgz-admin"…

JSONVUE

1.JSON学习 1.概念: JSON是把JS对象变成字符串. 2.作用: 多用于网络中数据传输. JavaScript对象 let person{name:"张三",age:18}//将JS对象转换为 JSON数据let person2JSON{"name":"张三","age":18}; 3.JS对象与JSON字符串转换…

Python爬虫-付费代理推荐和使用

付费代理的使用 相对免费代理来说&#xff0c;付费代理的稳定性更高。本节将介绍爬虫付费代理的相关使用过程。 1. 付费代理分类 付费代理分为两类&#xff1a; 一类提供接口获取海量代理&#xff0c;按天或者按量收费&#xff0c;如讯代理。 一类搭建了代理隧道&#xff0…

中国赛车公园行业市场现状分析与投资前景预测研究报告

全版价格&#xff1a;壹捌零零 报告版本&#xff1a;下单后会更新至最新版本 交货时间&#xff1a;1-2天 第一章赛车公园概述 第一节赛车公园概念及特点 一、赛车公园的定义 赛车主题公园就是以赛车为主题&#xff0c;集餐饮住宿、休闲娱乐多种功能于一体的综合性主题公园…