第7.1章:StarRocks性能调优——查询分析

目录

一、查看查询计划

1.1 概述

1.2 查询计划树

1.3 查看查询计划的命令

1.3 查看查询计划

二、查看查询Profile 

2.1 启用 Query Profile

2.2 获取 Query Profile

2.3 Query Profile结构与详细指标 

2.3.1 Query Profile的结构

2.3.2 Query Profile的合并策略

2.3.3 Query Profile的详细指标 

三、Query Hint

3.1 概述

3.2 系统变量 Hint

3.3 Join Hint

    为了优化StarRocks集群性能,需要定期对慢查询进行分析优化,避免慢查询影响整个集群的服务能力。query plan查询计划是FE通过解析sql生成的执行计划,而profile是BE执行查询后的结果,包含了每一步的耗时和数据处理量等数据。

一、查看查询计划

1.1 概述

   在StarRocks中,一条sql语句的生命周期可以分为(简化版)为查询解析(query parsing)查询计划(query plan)、执行(query execution)三个阶段。一般而言,查询解析不会成为查询性能的瓶颈,因为分析型需求的qps(“每秒查询率”或“每秒请求数”)不高。所以决定查询性能的关键就在于查询规划(query plan)和查询执行(query execution)。两者关系是:query plan负责组织算子(scan/join/aggregation)之间的关系,query execution负责执行具体算子。

1.2 查询计划树

    查询规划器用来决定数据库如何具体执行一个 SQL 的,比如用户指定了一个 Join 算子,则查询规划器需要决定具体的 Join 算法,比如是使用 Shuffle 还是 Broadcast;Join顺序是否需要调整以避免笛卡尔积;以及确定最终的在哪些节点执行等等。

  Doris的查询规划器是先将一个 SQL语句转换成一个单机执行计划树,SQL --> PlanNodeTree

    之后,查询规划器会根据具体的算子执行方式、数据的具体分布,将单机查询计划转换为分布式查询计划,即PlanNodeTree --->PlanFragmentTree,分布式查询计划是由多个Plan Fragment 组成的,例如:Plan Fragment 0,Plan Fragment 1,Plan Fragment 2deng 。每个 Fragment 负责查询计划的一部分,各个Fragment之间会通过DataStreamSink和ExchangeNode 算子进行数据的传输。

   

   如上图,我们将单机计划分成了两个 Fragment:F1 和 F2。两个 Fragment 之间通过一个 ExchangeNode 节点传输数据。而一个Fragment 会进一步的划分为多个Instance。Instance 是最终具体的执行实例。划分成多个 Instance 有助于充分利用机器资源,提升一个 Fragment 的执行并发度

1.3 查看查询计划的命令

   query plan可以分为逻辑执行计划(logical query plan)和物理执行计划(physical query plan),本文说的query plan默认指代的都是逻辑执行计划。 通过explain  sql_statement 命令查看query plan。

   ps: Doris中的命令更丰富:查询分析 - Apache Doris

1.3 查看查询计划

    来自StarRocks官网案例:分析查询 | StarRocks

     查询计划涉及的概念: 

 以下面这个query plan查询计划为例,进行分析:

mysql> EXPLAIN select count(*)
from store_sales, household_demographics, time_dim, store
where ss_sold_time_sk = time_dim.t_time_skand ss_hdemo_sk = household_demographics.hd_demo_skand ss_store_sk = s_store_skand time_dim.t_hour = 8and time_dim.t_minute >= 30and household_demographics.hd_dep_count = 5and store.s_store_name = 'ese'
order by count(*) limit 100;+------------------------------------------------------------------------------+
| Explain String                                                               |
+------------------------------------------------------------------------------+
| PLAN FRAGMENT 0                                                              |
|  OUTPUT EXPRS:<slot 11>                                                      |
|   PARTITION: UNPARTITIONED                                                   |
|   RESULT SINK                                                                |
|   12:MERGING-EXCHANGE                                                        |
|      limit: 100                                                              |
|      tuple ids: 5                                                            |
|                                                                              |
| PLAN FRAGMENT 1                                                              |
|  OUTPUT EXPRS:                                                               |
|   PARTITION: RANDOM                                                          |
|   STREAM DATA SINK                                                           |
|     EXCHANGE ID: 12                                                          |
|     UNPARTITIONED                                                            |
|                                                                              |
|   8:TOP-N                                                                    |
|   |  order by: <slot 11> ASC                                                 |
|   |  offset: 0                                                               |
|   |  limit: 100                                                              |
|   |  tuple ids: 5                                                            |
|   |                                                                          |
|   7:AGGREGATE (update finalize)                                              |
|   |  output: count(*)                                                        |
|   |  group by:                                                               |
|   |  tuple ids: 4                                                            |
|   |                                                                          |
|   6:HASH JOIN                                                                |
|   |  join op: INNER JOIN (BROADCAST)                                         |
|   |  hash predicates:                                                        |
|   |  colocate: false, reason: left hash join node can not do colocate        |
|   |  equal join conjunct: `ss_store_sk` = `s_store_sk`                       |
|   |  tuple ids: 0 2 1 3                                                      |
|   |                                                                          |
|   |----11:EXCHANGE                                                           |
|   |       tuple ids: 3                                                       |
|   |                                                                          |
|   4:HASH JOIN                                                                |
|   |  join op: INNER JOIN (BROADCAST)                                         |
|   |  hash predicates:                                                        |
|   |  colocate: false, reason: left hash join node can not do colocate        |
|   |  equal join conjunct: `ss_hdemo_sk`=`household_demographics`.`hd_demo_sk`|
|   |  tuple ids: 0 2 1                                                        |
|   |                                                                          |
|   |----10:EXCHANGE                                                           |
|   |       tuple ids: 1                                                       |
|   |                                                                          |
|   2:HASH JOIN                                                                |
|   |  join op: INNER JOIN (BROADCAST)                                         |
|   |  hash predicates:                                                        |
|   |  colocate: false, reason: table not in same group                        |
|   |  equal join conjunct: `ss_sold_time_sk` = `time_dim`.`t_time_sk`         |
|   |  tuple ids: 0 2                                                          |
|   |                                                                          |
|   |----9:EXCHANGE                                                            |
|   |       tuple ids: 2                                                       |
|   |                                                                          |
|   0:OlapScanNode                                                             |
|      TABLE: store_sales                                                      |
|      PREAGGREGATION: OFF. Reason: `ss_sold_time_sk` is value column          |
|      partitions=1/1                                                          |
|      rollup: store_sales                                                     |
|      tabletRatio=0/0                                                         |
|      tabletList=                                                             |
|      cardinality=-1                                                          |
|      avgRowSize=0.0                                                          |
|      numNodes=0                                                              |
|      tuple ids: 0                                                            |
|                                                                              |
| PLAN FRAGMENT 2                                                              |
|  OUTPUT EXPRS:                                                               |
|   PARTITION: RANDOM                                                          |
|                                                                              |
|   STREAM DATA SINK                                                           |
|     EXCHANGE ID: 11                                                          |
|     UNPARTITIONED                                                            |
|                                                                              |
|   5:OlapScanNode                                                             |
|      TABLE: store                                                            |
|      PREAGGREGATION: OFF. Reason: null                                       |
|      PREDICATES: `store`.`s_store_name` = 'ese'                              |
|      partitions=1/1                                                          |
|      rollup: store                                                           |
|      tabletRatio=0/0                                                         |
|      tabletList=                                                             |
|      cardinality=-1                                                          |
|      avgRowSize=0.0                                                          |
|      numNodes=0                                                              |
|      tuple ids: 3                                                            |
|                                                                              |
| PLAN FRAGMENT 3                                                              |
|  OUTPUT EXPRS:                                                               |
|   PARTITION: RANDOM                                                          |
|   STREAM DATA SINK                                                           |
|     EXCHANGE ID: 10                                                          |
|     UNPARTITIONED                                                            |
|                                                                              |
|   3:OlapScanNode                                                             |
|      TABLE: household_demographics                                           |
|      PREAGGREGATION: OFF. Reason: null                                       |
|      PREDICATES: `household_demographics`.`hd_dep_count` = 5                 |
|      partitions=1/1                                                          |
|      rollup: household_demographics                                          |
|      tabletRatio=0/0                                                         |
|      tabletList=                                                             |
|      cardinality=-1                                                          |
|      avgRowSize=0.0                                                          |
|      numNodes=0                                                              |
|      tuple ids: 1                                                            |
|                                                                              |
| PLAN FRAGMENT 4                                                              |
|  OUTPUT EXPRS:                                                               |
|   PARTITION: RANDOM                                                          |
|   STREAM DATA SINK                                                           |
|     EXCHANGE ID: 09                                                          |
|     UNPARTITIONED                                                            |
|                                                                              |
|   1:OlapScanNode                                                             |
|      TABLE: time_dim                                                         |
|      PREAGGREGATION: OFF. Reason: null                                       |
|      PREDICATES: `time_dim`.`t_hour` = 8, `time_dim`.`t_minute` >= 30        |
|      partitions=1/1                                                          |
|      rollup: time_dim                                                        |
|      tabletRatio=0/0                                                         |
|      tabletList=                                                             |
|      cardinality=-1                                                          |
|      avgRowSize=0.0                                                          |
|      numNodes=0                                                              |
|      tuple ids: 2                                                            |
+------------------------------------------------------------------------------+
128 rows in set (0.02 sec)

  解析过程:query plan分为 5 个pan fragment,编号从 0 至4,通过从下至上的方式查看query plan。

    step1:最底部的 Plan Fragment 为 Fragment 4,它负责扫描time_dim表,并提前执行相关查询条件 time_dim.t_hour = 8 and time_dim.t_minute >= 30,即谓词下推。这里的time_dim表采用的是聚合表,对于聚合表(Aggregate Key),StarRocks 会根据不同查询选择是否开启预聚合 PREAGGREGATION。以上示例中 time_dim 表的预聚合为关闭状态,此状态之下 StarRocks 会读取 time_dim 的全部维度列,如果当前表包含大量维度列,这可能会成为影响性能的一个关键因素。如果 time_dim 表被设置为根据 Range Partition 进行数据划分(数据分区),Query Plan 中的 partitions 会表征查询命中的分区,无关分区被自动过滤,从而有效减少扫描数据量。如果当前表有物化视图,StarRocks 会根据查询去自动选择物化视图,如果没有物化视图,那么查询自动命中 base table(基表),也就是以上示例中展示的 rollup: time_dim

  step2:当 time_dim 表数据扫描完成之后,Fragment 4 的执行过程也就随之结束,此时它将扫描得到的数据传递给其他 Fragment(各个Fragment之间,通过DataStreamSink和ExchangeNode 算子进行数据的传输。以上示例 EXCHANGE ID : 09 表征了数据传递给了标号为 9 的接收节点。

   Fragment 2,3,4功能类似,只是负责扫描的表不同。而查询中的 Order/Aggregation/Join 算子,都在 Fragment 1 中进行。

  step3:Fragment 1 集成了三个 Join 算子的执行,采用默认的 BROADCAST 方式进行执行,也就是小表向大表广播的方式进行。如果两个 Join 的表都是大表,建议采用 SHUFFLE 的方式进行。目前 StarRocks 只支持 HASH JOIN,也就是采用哈希算法进行 Join。以上示例中的 colocate 字段用来表述两张 Join 表采用同样的分区/分桶方式。如果分区/分桶方式相同,Colocate Join 的过程可以直接在本地执行,不用进行数据的移动。Join 执行完成之后,Fragment 1 就会执行上层的 Aggregation、Order by 和 TOP-N 算子。

二、查看查询Profile 

2.1 启用 Query Profile

   官网文章地址:Query Profile 概述 | StarRocks

    Profile 包含了一个sql查询涉及的所有工作节点的执行信息,有助于我们分析查询性能的瓶颈。将变量 enable_profile 设置为 true 以启用 Query Profile:SET enable_profile = true;

2.2 获取 Query Profile

以下步骤获取 Query Profile:

  1. 在浏览器中访问 http://<fe_ip>:<fe_http_port>
  2. 在显示的页面上,单击顶部导航中的 queries
  3. 在 Finished Queries 列表中,选择您要分析的查询并单击 Profile 列中的链接。

   页面将跳转至相应 Query Profile

2.3 Query Profile结构与详细指标 

2.3.1 Query Profile的结构

   Query Profile 的结构与执行引擎的设计密切相关,由以下五部分组成:

  • Fragment:执行树。一个查询由一个或多个Fragment组成
  • FragmentInstance:每个Fragment可以有多个实例,每个实例称作FragmentInstance,分别由不同的计算节点来执行
  • Pipeline:一个FragmentInstance会被拆分成多个Pipeline,每个Pipeline是一个执行链,由一组首尾相接的 Operator 构成。
  • PipelineDriver:一个 Pipeline 可以有多个实例,每个实例称为 PipelineDriver,以充分利用多个计算核心。
  • Operator:算子,一个 PipelineDriver 由多个 Operator 组成。

2.3.2 Query Profile的合并策略

    同一个Fragment 关联的多个 FragmentInstance 在结构上具有高度相似性。为了减少 Query Profile 的体积,可以将 FragmentInstance 层进行合并,原本的五层结构便简化为三层:

  • Fragment:执行树
  • Pipeline:执行链
  • Operator:算子

 通过一个 Session变量 pipeline_profile_level 来控制这个合并行为,其可选值有2个:

  • 1:合并,即三层结构。默认值。
  • 2:不合并,即保留原始的五层结构。
  • 其他任何数值都会被当成默认值 1

 通常没有必要调整这个参数,就采取默认值1

2.3.3 Query Profile的详细指标 

 太多了,看官网:Query Profile 结构与详细指标 | StarRocks

三、Query Hint

3.1 概述

   Hint是一种指令或注释,显式地向查询优化器建议如何执行查询,Hint 仅在单个查询范围内生效。 StarRocks 目前支持两种 Hint:系统变量 Hint 和 Join Hint

3.2 系统变量 Hint

    在 selec等语句中通过 /*+ ... */ 注释的形式设置一个或多个系统变量 hint。其他语句中如果包含 select 子句(如创建物化视图create materialized view as select,创建视图create view as select),则也可以在该 select 子句中使用系统变量 hint。

 select [/*+ set_var(key=value [, key = value]*) */] ...
#创建物化视图时在 SELECT 子句中通过系统变量 query_timeout 来设置查询执行超时时间。
create materialized view mv 
partition by dt 
distributed by hash(`key`) 
buckets 10 
refresh async 
as select /*+ set_var(query_timeout=500) */ * from dual;

3.3 Join Hint

    针对多表关联查询,优化器一般会主动选择最优的 Join 执行方式(Join Reorder)。在特殊情况下,用户使用 Join Hint显式地指定Join 执行方式。目前 Join Hint 支持的Join执行方式有Broadcast Join、Shuffle Join、Bucket Shuffle Join 和 Colocate Join。

  当Join Hint指定Colocate Join或 Bucket Shuffle Join 时,需要确保表的数据分布情况满足这两种 Join 执行方式的要求,否则用户指定的Join执行方式不生效。

#语法
... join { [broadcast] | [shuffle] | [bucket] | [colocate] | [unreorder]} ...#说明:使用 Join Hint 时大小写不敏感。

举例:

  • Shuffle Join

     如果需要将表 A、B 中分桶键取值相同的数据行 Shuffle 到相同机器上,再进行 Join 操作,您可以设置 Join Hint 为 Shuffle Join。

select k1 from t1 join [SHUFFLE] t2 on t1.k1 = t2.k2 group by t2.k2;
  • Broadcast Join

   如果表 A 是个大表,表 B 是个小表,则可以设置 Join Hint 为 Broadcast Join。表 B 的数据全量广播到表 A 数据所在的机器上,再进行 Join 操作。Broadcast Join 相比较于 Shuffle Join,节省了 Shuffle 表 A 数据的开销。

select k1 from t1 join [broadcast] t2 on t1.k1 = t2.k2 group by t2.k2;
  • Bucket Shuffle Join

    如果关联查询中 Join 命中表 A 的分桶键 ,且表 A 和表 B 均是大表的情况下,可以设置 Join Hint 为 Bucket Shuffle Join。表 B 数据会按照表 A 数据的分布方式,Shuffle 到表 A 数据所在机器上,再进行 Join 操作。Bucket Shuffle Join 是在 Broadcast Join 的基础上进一步优化,Shuffle B 表的数据量全局只有一份,比 Broadcast Join 少传输了很多倍数据量。

select k1 from t1 join [bucket] t2 on t1.k1 = t2.k2 group by t2.k2;
  • Colocate Join

    如果建表时指定表A 和 B属于同一个 Colocation Group,则表 A 和表 B 分桶键取值相同的数据行一定分布在相同 BE 节点上。当关联查询中 Join命中表 A 和 B 的分桶键,可以设置 Join Hint 为 Colocate Join。 具有相同键值的数据直接在本地 Join,减少数据在节点间的传输耗时,从而提高查询性能。

select k1 from t1 join [colocate] t2 on t1.k1 = t2.k2 group by t2.k2;

  通过explain命令来查看 Join Hint 是否生效。如果返回结果所显示的 Join 执行方式符合 Join Hint,则表示 Join Hint 生效。

explain select k1 from t1 join [colocate] t2 on t1.k1 = t2.k2 group by t2.k2;

参考文章:

StarRocks技术内幕:查询原理浅析

【源码解析系列】 Apache Doris 查询源码解析

Doris的查询计划-腾讯云开发者社区-腾讯云

分析查询 | StarRocks

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/703180.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

WPF Style样式设置

1.本window设置样式 <Window x:Class"WPF_Study.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schemas.microsoft.com/expressi…

CentOS删除除了最近5个JAR程序外的所有指定Java程序

帮我写一个shell脚本,ps -eo pid,lstart,cmd --sort=-start_time | grep "pgz-admin"查到的结果,返回的所有进程PID,第六个之上的,全部kill 当然,你可以创建一个简单的Shell脚本来完成这个任务。以下是一个例子: #!/bin/bash# 获取包含 "pgz-admin"…

JSONVUE

1.JSON学习 1.概念: JSON是把JS对象变成字符串. 2.作用: 多用于网络中数据传输. JavaScript对象 let person{name:"张三",age:18}//将JS对象转换为 JSON数据let person2JSON{"name":"张三","age":18}; 3.JS对象与JSON字符串转换…

Python爬虫-付费代理推荐和使用

付费代理的使用 相对免费代理来说&#xff0c;付费代理的稳定性更高。本节将介绍爬虫付费代理的相关使用过程。 1. 付费代理分类 付费代理分为两类&#xff1a; 一类提供接口获取海量代理&#xff0c;按天或者按量收费&#xff0c;如讯代理。 一类搭建了代理隧道&#xff0…

AR应用的开发流程

增强现实&#xff08;Augmented Reality&#xff0c;AR&#xff09;是一种技术&#xff0c;它将虚拟信息叠加在真实世界中&#xff0c;通过计算机生成的视觉、听觉、触觉等感官反馈&#xff0c;将虚拟元素与现实世界进行交互。这种技术使得用户可以与现实世界中的虚拟对象进行互…

Windows系统搭建Elasticsearch引擎结合内网穿透实现远程连接查询数据

文章目录 系统环境1. Windows 安装Elasticsearch2. 本地访问Elasticsearch3. Windows 安装 Cpolar4. 创建Elasticsearch公网访问地址5. 远程访问Elasticsearch6. 设置固定二级子域名 Elasticsearch是一个基于Lucene库的分布式搜索和分析引擎&#xff0c;它提供了一个分布式、多…

社交媒体变革者:剖析Facebook对在线互动的贡献

随着数字化时代的蓬勃发展&#xff0c;社交媒体已经成为人们日常生活中不可或缺的一部分。在这个领域的发展中&#xff0c;Facebook作为先行者和领导者&#xff0c;对在线互动的演变和发展产生了深远的影响。本文将深入剖析Facebook在社交媒体领域的贡献&#xff0c;以及它对在…

Python爬虫-爬取B站番剧封面

本文是本人最近学习Python爬虫所做的小练习。如有侵权&#xff0c;请联系删除。 页面获取url 代码 import requests import os import re# 创建文件夹 path os.getcwd() /images if not os.path.exists(path):os.mkdir(path)# 当前页数 page 1 # 总页数 total_page 2# 自动…

项目打包提示一堆 ts 类型错误问题解决

问题 vue3 ts 项目在打包的过程中报了一大堆 ts 类型错误提示&#xff0c;如下图所示&#xff1a; 报错&#xff1a;Could not find a declaration file for module … implicitly has an ‘any’ type. 解决方法 查看 package.json 文件&#xff0c;可以看到&#xff0c;默…

Python Pandas将 DataFrame 转换为列表

更多Python学习内容&#xff1a;ipengtao.com 在数据分析和处理过程中&#xff0c;经常会使用到 Pandas 库来处理和操作数据。Pandas 提供了灵活强大的数据结构 DataFrame&#xff0c;它可以存储和处理各种类型的数据&#xff0c;并提供了丰富的方法和函数来进行数据操作。有时…

AtCoder ABC342 A-D题解

华为出的比赛&#xff1f; 好像是全站首个题解哎&#xff01; 比赛链接:ABC342 Problem A: 稍微有点含金量的签到题。 #include <bits/stdc.h> using namespace std; int main(){string S;cin>>S;for(int i0;i<s.size();i){if(count(S.begin(),S.end(),S[i…

随机分布模型

目录 前言 一、离散型随机变量 1.1 0-1分布 1.2 二项分布 1.3 帕斯卡分布 1.4 几何分布 1.5 超几何分布 1.6 泊松分布 二、连续型随机变量 2.1 均匀分布 2.2 指数分布 2.3 高斯分布/正态分布 2.4 分布&#xff08;抽样分布&#xff09; 2.5 t分布&#xff08;抽样…

matlab经验模式分解的R波检测算法

1、内容简介 略 56-可以交流、咨询、答疑 2、内容说明 略 心血管疾病是威胁人类生命的主要疾病之一&#xff0c;而心电信号&#xff08;electrocardiogram, ECG&#xff09; 则是评价心脏功能的主要依据&#xff0c;因此&#xff0c;关于心电信号检测处理的研究一直为各方所…

react中修改state中的值无效?

// 初始化state state {personArr:[{name:张三,id:1},{name:李四,id:2},{name:王五,id:3}] }componentDidMount(){const newName 赵六const indexUpdate 1const newArr this.state.personArr.map((item,index)>{if(indexUpdate index){return {...item,name:newName}}e…

Nest.js权限管理系统开发(六)新建模块

本文相关文档&#xff1a;NestJS 中文网 创建模块 nest g命令 我们知道一个模块往往包含controller、module、service等文件&#xff0c;为了方便我们创建这些文件&#xff0c;nest cli提供了一些命令&#xff1a; 生成模块 (nest g mo) 以保持代码井井有条并建立清晰的边界…

适合新手博主站长使用的免费响应式WordPress博客主题JianYue

这款JianYue主题之所以命名为 JianYue&#xff0c;意思就是简单而不简约的。是根据Blogs主题优化而成&#xff0c;剔除了一些不必要的功能及排版&#xff0c;仅保留一种博客布局&#xff0c;让新手站长能够快速手上WordPress。可以说这款主题比较适合新手博主站长使用&#xff…

SpringCloud-Docker原理解析

Spring Cloud和Docker的结合为微服务架构的部署和管理提供了强大的支持。本文深入剖析Spring Cloud与Docker的集成原理&#xff0c;从服务注册与发现、配置管理、负载均衡到容器化部署等方面展开详细解析。探讨Spring Cloud如何利用Docker容器技术实现服务的弹性伸缩&#xff0…

【深度学习】CIFAR10图像分类

案例3&#xff1a;PyTorch实战: CIFAR10图像分类 1 任务目标 1.1 用多层感知机(MLP)和卷积网络(ConvNet)完成CIFAR10分类 使用PyTorch分别实现多层感知机(MLP)和卷积网络(ConvNet)&#xff0c;并完成CIFAR10数据集&#xff08;http://www.cs.toronto.edu/~kriz/cifar.html&a…

[C++]C++中memcpy和memmove的区别总结

这篇文章主要介绍了C中memcpy和memmove的区别总结,这个问题经常出现在C的面试题目中,需要的朋友可以参考下 变态的命名 我们在写程序时&#xff0c;一般讲究见到变量的命名&#xff0c;就能让别人基本知道该变量的含义。memcpy内存拷贝&#xff0c;没有问题;memmove&#xff…

测试环境搭建整套大数据系统(七:集群搭建kafka(2.13)+flink+hudi+dinky)

一&#xff1a;搭建kafka。 1. 三台机器执行以下命令。 cd /opt wget wget https://dlcdn.apache.org/kafka/3.6.1/kafka_2.13-3.6.1.tgz tar zxvf kafka_2.13-3.6.1.tgz cd kafka_2.13-3.6.1/config vim server.properties修改以下俩内容 1.三台机器分别给予各自的broker_id…