OpenCV(2)

1.OpenCV的模块

其中core、highgui、imgproc是最基础的模块,该课程主要是围绕这几个模块展开的,分别介绍如下:

  • core模块实现了最核心的数据结构及其基本运算,如绘图函数、数组操作相关函数等。
  • highgui模块实现了视频与图像的读取、显示、存储等接口。
  • imgproc模块实现了图像处理的基础方法,包括图像滤波、图像的几何变换、平滑、阈值分割、形态学处理、边缘检测、目标检测、运动分析和对象跟踪等。

对于图像处理其他更高层次的方向及应用,OpenCV也有相关的模块实现

  • features2d模块用于提取图像特征以及特征匹配,nonfree模块实现了一些专利算法,如sift特征。
  • objdetect模块实现了一些目标检测的功能,经典的基于Haar、LBP特征的人脸检测,基于HOG的行人、汽车等目标检测,分类器使用Cascade Classification(级联分类)和Latent SVM等。
  • stitching模块实现了图像拼接功能。
  • FLANN模块(Fast Library for Approximate Nearest Neighbors),包含快速近似最近邻搜索FLANN 和聚类Clustering算法。
  • ml模块机器学习模块(SVM,决策树,Boosting等等)。
  • photo模块包含图像修复和图像去噪两部分。
  • video模块针对视频处理,如背景分离,前景检测、对象跟踪等。
  • calib3d模块即Calibration(校准)3D,这个模块主要是相机校准和三维重建相关的内容。包含了基本的多视角几何算法,单个立体摄像头标定,物体姿态估计,立体相似性算法,3D信息的重建等等。
  • G-API模块包含超高效的图像处理pipeline引擎

2.图像的基础操作

图像的IO操作
2.1读取图像
  1. API
    cv.imread()
    

    参数:

  2. 要读取的图像

  3. 读取方式的标志

    • cv.IMREAD*COLOR:以彩色模式加载图像,任何图像的透明度都将被忽略。这是默认参数。

    • cv.IMREAD*GRAYSCALE:以灰度模式加载图像

    • cv.IMREAD_UNCHANGED:包括alpha通道的加载图像模式。

      可以使用1、0或者-1来替代上面三个标志

  4. 参考代码

  • import numpy as np
    import cv2 as cv
    # 以灰度图的形式读取图像
    img = cv.imread('messi5.jpg',0)
    2.2显示图像            
  •      api
    cv.imwrite()
    

  • 参数:

    • 文件名,要保存在哪里
    • 要保存的图像
  • 参考代码

    cv.imwrite('messigray.png',img)
    
    2.3总结

3.绘制几何图形 

   3.1 绘制直线

cv.line(img,start,end,color,thickness)

参数:

  • img:要绘制直线的图像
  • Start,end: 直线的起点和终点
  • color: 线条的颜色
  • Thickness: 线条宽度

3.2 绘制圆形

cv.circle(img,centerpoint, r, color, thickness)

参数:

  • img:要绘制圆形的图像
  • Centerpoint, r: 圆心和半径
  • color: 线条的颜色
  • Thickness: 线条宽度,为-1时生成闭合图案并填充颜色

3.3 绘制矩形

cv.rectangle(img,leftupper,rightdown,color,thickness)

参数:

  • img:要绘制矩形的图像
  • Leftupper, rightdown: 矩形的左上角和右下角坐标
  • color: 线条的颜色
  • Thickness: 线条宽度

3.4 向图像中添加文字

cv.putText(img,text,station, font, fontsize,color,thickness,cv.LINE_AA)

参数:

  • img: 图像
  • text:要写入的文本数据
  • station:文本的放置位置
  • font:字体
  • Fontsize :字体大小

3.5效果展示

我们生成一个全黑的图像,然后在里面绘制图像并添加文字

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
# 1 创建一个空白的图像
img = np.zeros((512,512,3), np.uint8)
# 2 绘制图形
cv.line(img,(0,0),(511,511),(255,0,0),5)
cv.rectangle(img,(384,0),(510,128),(0,255,0),3)
cv.circle(img,(447,63), 63, (0,0,255), -1)
font = cv.FONT_HERSHEY_SIMPLEX
cv.putText(img,'OpenCV',(10,500), font, 4,(255,255,255),2,cv.LINE_AA)
# 3 图像展示
plt.imshow(img[:,:,::-1])
plt.title('匹配结果'), plt.xticks([]), plt.yticks([])
plt.show()
获取并修改图像中的像素点

我们可以通过行和列的坐标值获取该像素点的像素值。对于BGR图像,它返回一个蓝,绿,红值的数组。对于灰度图像,仅返回相应的强度值。使用相同的方法对像素值进行修改。

import numpy as np
import cv2 as cv
img = cv.imread('messi5.jpg')
# 获取某个像素点的值
px = img[100,100]
# 仅获取蓝色通道的强度值
blue = img[100,100,0]
# 修改某个位置的像素值
img[100,100] = [255,255,255]
获取图像的属性
图像属性包括行数,列数和通道数,图像数据类型,像素数等。图像通道的拆分与合并

有时需要在B,G,R通道图像上单独工作。在这种情况下,需要将BGR图像分割为单个通道。或者在其他情况下,可能需要将这些单独的通道合并到BGR图像。你可以通过以下方式完成。

# 通道拆分
b,g,r = cv.split(img)
# 通道合并
img = cv.merge((b,g,r))
色彩空间的改变

OpenCV中有150多种颜色空间转换方法。最广泛使用的转换方法有两种,BGR↔Gray和BGR↔HSV。

API:

cv.cvtColor(input_image,flag)

参数:

  • input_image: 进行颜色空间转换的图像
  • flag: 转换类型
    • cv.COLOR_BGR2GRAY : BGR↔Gray
    • cv.COLOR_BGR2HSV: BGR→HSV

4.算数操作 

4.1图像的加法

你可以使用OpenCV的cv.add()函数把两幅图像相加,或者可以简单地通过numpy操作添加两个图像,如res = img1 + img2。两个图像应该具有相同的大小和类型,或者第二个图像可以是标量值。

注意:OpenCV加法和Numpy加法之间存在差异。OpenCV的加法是饱和操作,而Numpy添加是模运算。

>>> x = np.uint8([250])
>>> y = np.uint8([10])
>>> print( cv.add(x,y) ) # 250+10 = 260 => 255
[[255]]
>>> print( x+y )          # 250+10 = 260 % 256 = 4
[4]

这种差别在你对两幅图像进行加法时会更加明显。OpenCV 的结果会更好一点。所以我们尽量使用 OpenCV 中的函数。

我们将下面两幅图像:

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt# 1 读取图像
img1 = cv.imread("view.jpg")
img2 = cv.imread("rain.jpg")# 2 加法操作
img3 = cv.add(img1,img2) # cv中的加法
img4 = img1+img2 # 直接相加# 3 图像显示
fig,axes=plt.subplots(nrows=1,ncols=2,figsize=(10,8),dpi=100)
axes[0].imshow(img3[:,:,::-1])
axes[0].set_title("cv中的加法")
axes[1].imshow(img4[:,:,::-1])
axes[1].set_title("直接相加")
plt.show()

4.2图像的混合

这其实也是加法,但是不同的是两幅图像的权重不同,这就会给人一种混合或者透明的感觉。图像混合的计算公式如下:

g(x) = (1−α)f0(x) + αf1(x)

通过修改 α 的值(0 → 1),可以实现非常炫酷的混合。

现在我们把两幅图混合在一起。第一幅图的权重是0.7,第二幅图的权重是0.3。函数cv2.addWeighted()可以按下面的公式对图片进行混合操作。

dst = α⋅img1 + β⋅img2 + γ

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt# 1 读取图像
img1 = cv.imread("view.jpg")
img2 = cv.imread("rain.jpg")# 2 图像混合
img3 = cv.addWeighted(img1,0.7,img2,0.3,0)# 3 图像显示
plt.figure(figsize=(8,8))
plt.imshow(img3[:,:,::-1])
plt.show()

5.几何变换 

5.1图像缩放

缩放是对图像的大小进行调整,即使图像放大或缩小。

  1. API

    cv2.resize(src,dsize,fx=0,fy=0,interpolation=cv2.INTER_LINEAR)
    

    参数:

  2. src : 输入图像

  3. dsize: 绝对尺寸,直接指定调整后图像的大小

  4. fx,fy: 相对尺寸,将dsize设置为None,然后将fx和fy设置为比例因子即可

  5. interpolation:插值方法,

    import cv2 as cv
    # 1. 读取图片
    img1 = cv.imread("./image/dog.jpeg")
    # 2.图像缩放
    # 2.1 绝对尺寸
    rows,cols = img1.shape[:2]
    res = cv.resize(img1,(2*cols,2*rows),interpolation=cv.INTER_CUBIC)# 2.2 相对尺寸
    res1 = cv.resize(img1,None,fx=0.5,fy=0.5)# 3 图像显示
    # 3.1 使用opencv显示图像(不推荐)
    cv.imshow("orignal",img1)
    cv.imshow("enlarge",res)
    cv.imshow("shrink)",res1)
    cv.waitKey(0)# 3.2 使用matplotlib显示图像
    fig,axes=plt.subplots(nrows=1,ncols=3,figsize=(10,8),dpi=100)
    axes[0].imshow(res[:,:,::-1])
    axes[0].set_title("绝对尺度(放大)")
    axes[1].imshow(img1[:,:,::-1])
    axes[1].set_title("原图")
    axes[2].imshow(res1[:,:,::-1])
    axes[2].set_title("相对尺度(缩小)")
    plt.show()

5.2图像平移

图像平移将图像按照指定方向和距离,移动到相应的位置。

  1. API
    cv.warpAffine(img,M,dsize)
    

    参数:

  2. img: 输入图像

  3. M: 2∗∗3移动矩阵

    对于(x,y)处的像素点,要把它移动到x+t​x​​,y+t​y​​)处时,M矩阵应如下设置:

    注意:将�M设置为np.float32类型的Numpy数组。

  4. 需求是将图像的像素点移动(50,100)的距离:

  5. dsize: 输出图像的大小

    注意:输出图像的大小,它应该是(宽度,高度)的形式。请记住,width=列数,height=行数。

  6. 示例

    import numpy as np
    import cv2 as cv
    import matplotlib.pyplot as plt
    # 1. 读取图像
    img1 = cv.imread("./image/image2.jpg")# 2. 图像平移
    rows,cols = img1.shape[:2]
    M = M = np.float32([[1,0,100],[0,1,50]])# 平移矩阵
    dst = cv.warpAffine(img1,M,(cols,rows))# 3. 图像显示
    fig,axes=plt.subplots(nrows=1,ncols=2,figsize=(10,8),dpi=100)
    axes[0].imshow(img1[:,:,::-1])
    axes[0].set_title("原图")
    axes[1].imshow(dst[:,:,::-1])
    axes[1].set_title("平移后结果")
    plt.show()

    5.3图像旋转

图像旋转是指图像按照某个位置转动一定角度的过程,旋转中图像仍保持这原始尺寸。图像旋转后图像的水平对称轴、垂直对称轴及中心坐标原点都可能会发生变换,因此需要对图像旋转中的坐标进行相应转换。

那图像是怎么进行旋转的呢?如下图所示:在OpenCV中图像旋转首先根据旋转角度和旋转中心获取旋转矩阵,然后根据旋转矩阵进行变换,即可实现任意角度和任意中心的旋转效果。

API

cv2.getRotationMatrix2D(center, angle, scale)

参数:

  • center:旋转中心
  • angle:旋转角度
  • scale:缩放比例

返回:

  • M:旋转矩阵

    调用cv.warpAffine完成图像的旋转

    import numpy as np
    import cv2 as cv
    import matplotlib.pyplot as plt
    # 1 读取图像
    img = cv.imread("./image/image2.jpg")# 2 图像旋转
    rows,cols = img.shape[:2]
    # 2.1 生成旋转矩阵
    M = cv.getRotationMatrix2D((cols/2,rows/2),90,1)
    # 2.2 进行旋转变换
    dst = cv.warpAffine(img,M,(cols,rows))# 3 图像展示
    fig,axes=plt.subplots(nrows=1,ncols=2,figsize=(10,8),dpi=100)
    axes[0].imshow(img1[:,:,::-1])
    axes[0].set_title("原图")
    axes[1].imshow(dst[:,:,::-1])
    axes[1].set_title("旋转后结果")
    plt.show()

5.4仿射变换

图像的仿射变换涉及到图像的形状位置角度的变化,是深度学习预处理中常到的功能,仿射变换主要是对图像的缩放,旋转,翻转和平移等操作的组合。

那什么是图像的仿射变换,如下图所示,图1中的点1, 2 和 3 与图二中三个点一一映射, 仍然形成三角形, 但形状已经大大改变,通过这样两组三点(感兴趣点)求出仿射变换, 接下来我们就能把仿射变换应用到图像中所有的点中,就完成了图像的仿射变换。

需要注意的是,对于图像而言,宽度方向是x,高度方向是y,坐标的顺序和图像像素对应下标一致。所以原点的位置不是左下角而是右上角,y的方向也不是向上,而是向下。

在仿射变换中,原图中所有的平行线在结果图像中同样平行。为了创建这个矩阵我们需要从原图像中找到三个点以及他们在输出图像中的位置。然后cv2.getAffineTransform 会创建一个 2x3 的矩阵,最后这个矩阵会被传给函数 cv2.warpAffine。

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
# 1 图像读取
img = cv.imread("./image/image2.jpg")# 2 仿射变换
rows,cols = img.shape[:2]
# 2.1 创建变换矩阵
pts1 = np.float32([[50,50],[200,50],[50,200]])
pts2 = np.float32([[100,100],[200,50],[100,250]])
M = cv.getAffineTransform(pts1,pts2)
# 2.2 完成仿射变换
dst = cv.warpAffine(img,M,(cols,rows))# 3 图像显示
fig,axes=plt.subplots(nrows=1,ncols=2,figsize=(10,8),dpi=100)
axes[0].imshow(img[:,:,::-1])
axes[0].set_title("原图")
axes[1].imshow(dst[:,:,::-1])
axes[1].set_title("仿射后结果")
plt.show()

5.5透射变换

透射变换是视角变化的结果,是指利用透视中心、像点、目标点三点共线的条件,按透视旋转定律使承影面(透视面)绕迹线(透视轴)旋转某一角度,破坏原有的投影光线束,仍能保持承影面上投影几何图形不变的变换。

其中:T1表示对图像进行线性变换,T2对图像进行平移,T3表示对图像进行投射变换,�22a​22​​一般设为1.

在opencv中,我们要找到四个点,其中任意三个不共线,然后获取变换矩阵T,再进行透射变换。通过函数cv.getPerspectiveTransform找到变换矩阵,将cv.warpPerspective应用于此3x3变换矩阵。

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
# 1 读取图像
img = cv.imread("./image/image2.jpg")
# 2 透射变换
rows,cols = img.shape[:2]
# 2.1 创建变换矩阵
pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]])
pts2 = np.float32([[100,145],[300,100],[80,290],[310,300]])T = cv.getPerspectiveTransform(pts1,pts2)
# 2.2 进行变换
dst = cv.warpPerspective(img,T,(cols,rows))# 3 图像显示
fig,axes=plt.subplots(nrows=1,ncols=2,figsize=(10,8),dpi=100)
axes[0].imshow(img[:,:,::-1])
axes[0].set_title("原图")
axes[1].imshow(dst[:,:,::-1])
axes[1].set_title("透射后结果")
plt.show()

5.6 图像金字塔

图像金字塔是图像多尺度表达的一种,最主要用于图像的分割,是一种以多分辨率来解释图像的有效但概念简单的结构。

图像金字塔用于机器视觉和图像压缩,一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。其通过梯次向下采样获得,直到达到某个终止条件才停止采样。

金字塔的底部是待处理图像的高分辨率表示,而顶部是低分辨率的近似,层级越高,图像越小,分辨率越低。

API

cv.pyrUp(img)       #对图像进行上采样
cv.pyrDown(img)        #对图像进行下采样

示例

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
# 1 图像读取
img = cv.imread("./image/image2.jpg")
# 2 进行图像采样
up_img = cv.pyrUp(img)  # 上采样操作
img_1 = cv.pyrDown(img)  # 下采样操作
# 3 图像显示
cv.imshow('enlarge', up_img)
cv.imshow('original', img)
cv.imshow('shrink', img_1)
cv.waitKey(0)
cv.destroyAllWindows()

6.形态学操作 

6.1连通性

在图像中,最小的单位是像素,每个像素周围有8个邻接像素,常见的邻接关系有3种:4邻接、8邻接和D邻接。分别如下图所示:

6.2形态学操作

形态学转换是基于图像形状的一些简单操作。它通常在二进制图像上执行。腐.蚀和膨胀是两个基本的形态学运算符。然后它的变体形式如开运算,闭运算,礼帽黑帽等。

6.2.1腐蚀和膨胀

腐蚀和膨胀是最基本的形态学操作,腐蚀和膨胀都是针对白色部分(高亮部分)而言的。

膨胀就是使图像中高亮部分扩张,效果图拥有比原图更大的高亮区域;腐蚀是原图中的高亮区域被蚕食,效果图拥有比原图更小的高亮区域。膨胀是求局部最大值的操作,腐蚀是求局部最小值的操作。

具体操作是:用一个结构元素扫描图像中的每一个像素,用结构元素中的每一个像素与其覆盖的像素做“与”操作,如果都为0,则该像素为0,否则为1。如下图所示,结构A被结构B腐蚀后:作用是将与物体接触的所有背景点合并到物体中,使目标增大,可添补目标中的孔洞。

API

  1. 腐蚀

    具体操作是:用一个结构元素扫描图像中的每一个像素,用结构元素中的每一个像素与其覆盖的像素做“与”操作,如果都为1,则该像素为1,否则为0。如下图所示,结构A被结构B腐蚀后:API

       cv.erode(img,kernel,iterations)
    

    参数:

  2. img: 要处理的图像
  3. kernel: 核结构
  4. iterations: 腐蚀的次数,默认是1
  5. 膨胀
  6. 我们使用一个5*5的卷积核实现腐蚀和膨胀的运算:
    import numpy as np
    import cv2 as cv
    import matplotlib.pyplot as plt
    # 1 读取图像
    img = cv.imread("./image/image3.png")
    # 2 创建核结构
    kernel = np.ones((5, 5), np.uint8)# 3 图像腐蚀和膨胀
    erosion = cv.erode(img, kernel) # 腐蚀
    dilate = cv.dilate(img,kernel) # 膨胀# 4 图像展示
    fig,axes=plt.subplots(nrows=1,ncols=3,figsize=(10,8),dpi=100)
    axes[0].imshow(img)
    axes[0].set_title("原图")
    axes[1].imshow(erosion)
    axes[1].set_title("腐蚀后结果")
    axes[2].imshow(dilate)
    axes[2].set_title("膨胀后结果")
    plt.show()

6.3开闭运算

开运算和闭运算是将腐蚀和膨胀按照一定的次序进行处理。 但这两者并不是可逆的,即先开后闭并不能得到原来的图像。

  1. 开运算

    开运算是先腐蚀后膨胀,其作用是:分离物体,消除小区域。特点:消除噪点,去除小的干扰块,而不影响原来的图像。

    2.闭运算

    闭运算与开运算相反,是先膨胀后腐蚀,作用是消除/“闭合”物体里面的孔洞,特点:可以填充闭合区域。API

    cv.morphologyEx(img, op, kernel)
    

  2. 参数:

    • img: 要处理的图像
    • op: 处理方式:若进行开运算,则设为cv.MORPH_OPEN,若进行闭运算,则设为cv.MORPH_CLOSE
    • Kernel: 核结构
  3. 示例

    使用10*10的核结构对卷积进行开闭运算的实现。

    import numpy as np
    import cv2 as cv
    import matplotlib.pyplot as plt
    # 1 读取图像
    img1 = cv.imread("./image/image5.png")
    img2 = cv.imread("./image/image6.png")
    # 2 创建核结构
    kernel = np.ones((10, 10), np.uint8)
    # 3 图像的开闭运算
    cvOpen = cv.morphologyEx(img1,cv.MORPH_OPEN,kernel) # 开运算
    cvClose = cv.morphologyEx(img2,cv.MORPH_CLOSE,kernel)# 闭运算
    # 4 图像展示
    fig,axes=plt.subplots(nrows=2,ncols=2,figsize=(10,8))
    axes[0,0].imshow(img1)
    axes[0,0].set_title("原图")
    axes[0,1].imshow(cvOpen)
    axes[0,1].set_title("开运算结果")
    axes[1,0].imshow(img2)
    axes[1,0].set_title("原图")
    axes[1,1].imshow(cvClose)
    axes[1,1].set_title("闭运算结果")
    plt.show()

    6.4礼帽和黑帽

礼帽运算

原图像与“开运算“的结果图之差,如下式计算:

  1. 因为开运算带来的结果是放大了裂缝或者局部低亮度的区域,因此,从原图中减去开运算后的图,得到的效果图突出了比原图轮廓周围的区域更明亮的区域,且这一操作和选择的核的大小相关。

      礼帽运算用来分离比邻近点亮一些的斑块。当一幅图像具有大幅的背景的时候,而微小物品比较有规律的情况下,可以使用顶帽运算进行背景提取。

  2. 黑帽运算

    为”闭运算“的结果图与原图像之差。数学表达式为:

    黑帽运算后的效果图突出了比原图轮廓周围的区域更暗的区域,且这一操作和选择的核的大小相关。

    黑帽运算用来分离比邻近点暗一些的斑块。

API

cv.morphologyEx(img, op, kernel)

参数:

  • img: 要处理的图像

  • op: 处理方式:

    import numpy as np
    import cv2 as cv
    import matplotlib.pyplot as plt
    # 1 读取图像
    img1 = cv.imread("./image/image5.png")
    img2 = cv.imread("./image/image6.png")
    # 2 创建核结构
    kernel = np.ones((10, 10), np.uint8)
    # 3 图像的礼帽和黑帽运算
    cvOpen = cv.morphologyEx(img1,cv.MORPH_TOPHAT,kernel) # 礼帽运算
    cvClose = cv.morphologyEx(img2,cv.MORPH_BLACKHAT,kernel)# 黑帽运算
    # 4 图像显示
    fig,axes=plt.subplots(nrows=2,ncols=2,figsize=(10,8))
    axes[0,0].imshow(img1)
    axes[0,0].set_title("原图")
    axes[0,1].imshow(cvOpen)
    axes[0,1].set_title("礼帽运算结果")
    axes[1,0].imshow(img2)
    axes[1,0].set_title("原图")
    axes[1,1].imshow(cvClose)
    axes[1,1].set_title("黑帽运算结果")
    plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/702604.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【JVM】计数器引用和可达性分析

📝个人主页:五敷有你 🔥系列专栏:JVM ⛺️稳中求进,晒太阳 C/C的内存管理 在C/C这类没有自动垃圾回收机制的语言中,一个对象如果不再使用,需要手动释放,否则就会出现内存泄漏…

一文get,最容易碰上的接口自动化测试问题汇总

本篇文章分享几个接口自动化用例编写过程遇到的问题总结,希望能对初次探索接口自动化测试的小伙伴们解决问题上提供一小部分思路。 sql语句内容出现错误 空格:由于有些字段判断是变量,需要将sql拼接起来,但是在拼接字符串时没有…

对象池模板

概述 对象池的引入也是嵌入式开发的常用方法,也是内存预分配的一种,主要是用来隐藏全局对象的跟踪,通常预内存分配是通过数组来实现。 CMake配置 cmake_minimum_required(VERSION 3.5.1)project(objpool)add_executable(objpool objpool.cp…

C语言《数据结构与算法》安排教学计划课设

背景: 10、安排教学计划 (1) 问题描述。 学校每学期开设的课程是有先后顺序的,如计算机专业:开设《数据结构》课程之前,必须先开设《C语言程序设计》和《离散数学》课程,这种课程开设的先后顺序称为先行、后继课程关…

在使用nginx的时候快速测试配置文件,并重新启动

小技巧 Nginx修改配置文件后需要重新启动,常规操作是启动在任务管理器中关闭程序然后再次双击nginx.exe启动,但是使用命令行就可以快速的完成操作。 将cmd路径切换到nginx的安装路径 修改完成配置文件后 使用 nginx -t校验nginx 的配置文件是否出错 …

海豚调度DolphinScheduler入门学习

DS简介: DolphinScheduler 是一款分布式的、易扩展的、高可用的数据处理平台,主要包含调度中心、元数据管理、任务编排、任务调度、任务执行和告警等模块。其技术架构基于 Spring Boot 和 Spring Cloud 技术栈,采用了分布式锁、分布式任务队列…

vue3 实现 el-pagination页面分页组件的封装以及调用

示例图 一、组件代码 <template><el-config-provider :locale"zhCn"><el-pagination background class"lj-paging" layout"prev, pager, next, jumper" :pager-count"5" :total"total":current-page"p…

深度学习基础(四)医疗影像分析实战

之前的章节我们初步介绍了卷积神经网络&#xff08;CNN&#xff09;和循环神经网络&#xff08;RNN&#xff09;&#xff1a; 深度学习基础&#xff08;三&#xff09;循环神经网络&#xff08;RNN&#xff09;-CSDN博客文章浏览阅读1.2k次&#xff0c;点赞17次&#xff0c;收…

机器学习基础(六)TensorFlow与PyTorch

导语&#xff1a;上一节我们详细探索了监督与非监督学习的结合使用。&#xff0c;详情可见&#xff1a; 机器学习基础&#xff08;五&#xff09;监督与非监督学习的结合-CSDN博客文章浏览阅读4次。将监督学习和非监督学习结合起来&#xff0c;就像将两种不同的艺术形式融合&a…

1298 - 摘花生问题

题目描述 Hello Kitty 想摘点花生送给她喜欢的米老鼠。她来到一片有网格状道路的矩形花生地(如下图)&#xff0c;从西北角进去&#xff0c;东南角出来。地里每个道路的交叉点上都有种着一株花生苗&#xff0c;上面有若干颗花生&#xff0c;经过一株花生苗就能摘走该它上面所有…

消息中间件篇之RabbitMQ-消息重复消费

一、导致重复消费的情况 1. 网络抖动。 2. 消费者挂了。 消费者消费消息后&#xff0c;当确认消息还没有发送到MQ时&#xff0c;就发生网络抖动或者消费者宕机。那当消费者恢复后&#xff0c;由于MQ没有收到消息&#xff0c;而且消费者有重试机制&#xff0c;消费者就会再一次消…

python print 格式化输出详解

print 输出字符串和数字 以下实例中列举了print打印各种类型的示例 示例如下, print("qayrup") # 直接输出字符串print(100) # 输出数字str qayrup print(str) # 输出变量L [1,2,a] # 输出列表类型变量 print(L) t (1,2,a…

Folx GO+ 5.27 Mac上优秀好用的下载工具

Folx Pro 5 for Mac是Mac平台上公认的最好的下载工具&#xff0c;功能可以与迅雷相媲美。目前Folx Pro 5 特别版正式上线&#xff0c;新版的Folx整体界面更加简洁漂亮&#xff0c;支持HTTP FTP下载&#xff0c;torrent种子下载&#xff0c;高速下载&#xff0c;定时下载&#x…

C语言中strstr函数的使用!

strstr函数的作用是什么&#xff1f; 查找子字符串 具体直接看下面的这段代码我相信你必明白 #define _CRT_SECURE_NO_WARNINGS 1 #include<stdio.h> int main() { char *p1 "abcdefghijklmnopqrstuvwxyz"; char* p2 "abc"; char* r…

Open CASCADE学习|提取面的内外环线

在Open CASCADE中&#xff0c;区分内环和外环主要基于面的参数域内环线方向的定义。具体来说&#xff0c;在面的参数域内&#xff0c;沿着环线正方向前进时&#xff0c;如果左侧为面内、右侧为面外&#xff0c;那么该环线被视为外环&#xff1b;反之&#xff0c;如果左侧为面外…

access数据库泄露与IIS短文件名利用

access数据库 Microsoft Office Access是微软把 数据库引擎 的图形用户界面和 软件开发工具 结合在一起的一个 数据库管理系统 它的数据库是没有库名的&#xff0c;都是表名。 (借用别的up的图)是不是感觉有点像excel access数据库的后缀是.mdb access数据库泄露漏洞 如果…

PHATGOOSE:使用LoRA Experts创建低成本混合专家模型实现零样本泛化

这篇2月的新论文介绍了Post-Hoc Adaptive Tokenwise Gating Over an Ocean of Specialized Experts (PHATGOOSE)&#xff0c;这是一种通过利用一组专门的PEFT模块(如LoRA)实现零样本泛化的新方法 这个方法冻结整个模型&#xff0c;包括PEFT模块&#xff0c;并为每个模块训练一…

力扣随笔之移除元素(简单27)

思路&#xff1a;定义一个指针left&#xff0c;使该指针及该指针左边的数全部都不等于val&#xff0c;定义一个遍历指针i&#xff0c;若nums[i] val&#xff0c;则i自加&#xff0c;若nums[i] ! val&#xff0c;则将left&#xff0c;并将nums[i]的值赋给nums[left]&#xff0c…

MySQL引擎对决:深入解析MyISAM和InnoDB的区别

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 MySQL引擎对决&#xff1a;深入解析MyISAM和InnoDB的区别 前言引擎概述MyISAM&#xff1a;InnoDB&#xff1a; 使用场景使用 MyISAM 的最佳实践&#xff1a;使用 InnoDB 的最佳实践&#xff1a;可能的…

Jenkins自动化部署构建说明(8)

Jenkins构建说明 - 20211012 什么是Jenkins? Jenkins 是一款流行的开源持续集成&#xff08;Continuous Integration&#xff09;工具&#xff0c;广泛用于项目开发&#xff0c;具有自动化构建、测试和部署等功能。它是一个自动化的周期性的集成测试过程&#xff0c;从检出代…