question:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple matplotlib
Opencv
一、读取图片
(1).imshow
Mat imread(const string& filename, intflags=1 );flags:
enum
{
/* 8bit, color or not */CV_LOAD_IMAGE_UNCHANGED =-1,
/* 8bit, gray */CV_LOAD_IMAGE_GRAYSCALE =0,
/* ?, color */CV_LOAD_IMAGE_COLOR =1,
/* any depth, ? */CV_LOAD_IMAGE_ANYDEPTH =2,
/* ?, any color */CV_LOAD_IMAGE_ANYCOLOR =4
};Mat image0=imread("dota.jpg",CV_LOAD_IMAGE_ANYDEPTH | CV_LOAD_IMAGE_ANYCOLOR);//载入最真实的图像
Mat image1=imread("dota.jpg",0);//载入灰度图
Mat image2=imread("dota.jpg",199);//载入3通道的彩色图像
Mat logo=imread("dota_logo.jpg");//载入3通道的彩色图像
- CV_LOAD_IMAGE_UNCHANGED,这个标识在新版本中被废置了,忽略。
- CV_LOAD_IMAGE_ANYDEPTH- 如果取这个标识的话,若载入的图像的深度为16位或者32位,就返回对应深度的图像,否则,就转换为8位图像再返回。
- CV_LOAD_IMAGE_COLOR- 如果取这个标识的话,总是转换图像到彩色一体
- CV_LOAD_IMAGE_GRAYSCALE- 如果取这个标识的话,始终将图像转换成灰度
- flags >0返回一个3通道的彩色图像。
- flags =0返回灰度图像。
- flags <0返回包含Alpha通道的加载的图像。
(2).namedWindow
void namedWindow(const string& winname,int flags=WINDOW_AUTOSIZE );
- WINDOW_NORMAL设置了这个值,用户便可以改变窗口的大小(没有限制)
- WINDOW_AUTOSIZE如果设置了这个值,窗口大小会自动调整以适应所显示的图像,并且不能手动改变窗口大小。
- WINDOW_OPENGL 如果设置了这个值的话,窗口创建的时候便会支持OpenGL。
(3).imshow
void imshow(const string& winname, InputArray mat);
(4).效果图
c++
python
二、像素操作
(1).访问像素
1. at()
image.at<uchar>(j,i)= value; //单通道
image.at<cv::Vec3b>(j,i)[channel]= value; //三通道
image.at<cv::Vec3b>(j,i) = cv::Vec3b(a,b,c);
2.Mat_
cv::Mat_<uchar> image(image1);
image(20,30) = value;
(2).遍历像素
1.指针遍历
uchar *data = image.ptr<uchar>(i); //ptr()返回行的地址
for (int i = 0; i < height; i++) {cv::Vec3b* row = image.ptr<cv::Vec3b>(i);for (int j = 0; j < width; j++) {cv::Vec3b& pixel = row[j];//Vec3b&直接操作图像中的像素值,而不需要创建新的对象std::cout << "Pixel at (" << i << "," << j << "): "<< "B=" << (int)pixel[0] << " "<< "G=" << (int)pixel[1] << " "<< "R=" << (int)pixel[2] << std::endl;}
}
2.迭代器遍历
cv::MatIterator_ <cv::Vec3b> it;
或者
cv::Mat_<cv::Vec3b>::iterator it;
cv::MatIterator_<cv::Vec3b> it, end;
for (it = image.begin<cv::Vec3b>(), end = image.end<cv::Vec3b>(); it != end; ++it) {cv::Vec3b& pixel = *it;pixel[0] = 255; pixel[1] = 0; pixel[2] = 0;
}
python
c++
(3).threshold
double cv::threshold(src, OutputArray, thresh, maxval, type)
c++:
python:
(4).通道分离
1.split
C++: void split(const Mat& src, Mat*mvbegin);
C++: void split(InputArray m,OutputArrayOfArrays mv);
2.merge
C++: void merge(const Mat* mv, size_tcount, OutputArray dst)
C++: void merge(InputArrayOfArrays mv,OutputArray dst)
c++
python
(5)Gamma矫正
Gamma校正是对输入图像灰度值进行的非线性操作,使输出图像灰度值与输入图像灰度值呈指数关系。Gamma矫正用于调整图像的亮度和对比度
。Gamma矫正可以改变图像的灰度值分布,使图像在显示时看起来更加自然和逼真。通常情况下,人眼对亮度的感知是非线性的,因此使用Gamma矫正可以更好地模拟人眼的感知特性。
V o u t = A V i n γ V_{out}=AV_{in}^\gamma Vout=AVinγ
γ的值决定了输入图像和输出图像之间的灰度映射方式,即决定了是增强低灰度值区域还是增高灰度值区域。
γ>1时,图像的高灰度区域对比度得到增强,直观效果是一幅偏亮的图变暗了下来。
γ<1时,图像的低灰度区域对比度得到增强,直观效果是一幅偏暗的图变亮了起来。
python
c++
(6).深浅拷贝
浅拷贝是指当图像之间进行赋值时,图像数据并未发生复制,而是两个对象都指向同一块内存块。
深拷贝是指新创建的图像拥有原始图像的崭新拷贝
c++
python
三、基本绘图
(1).line
void cv::line(InputOutputArray img,Point pt1, Point pt2, const Scalar & color, int thickness = 1, int lineType = LINE_8, int shift = 0)
img | Image. |
---|---|
pt1 | First point of the line segment. |
pt2 | Second point of the line segment. |
color | Line color. |
thickness | Line thickness. |
lineType | Type of the line. See LineTypes. |
shift | Number of fractional bits in the point coordinates. |
(2).rectangle
void cv::rectangle(InputOutputArray img, Point pt1, Point pt2, const Scalar & color, int thickness = 1,int lineType = LINE_8, int shift = 0)void cv::rectangle(InputOutputArray img, Rect rec, const Scalar & color, int thickness = 1,int lineType = LINE_8, int shift = 0)
(3).circle
void cv::circle(InputOutputArray img, Point center, int radius, const Scalar & color, int thickness = 1, int lineType = LINE_8, int shift = 0)
python
c++
四、图像处理
(1).颜色空间
1.意义
-
RGB 颜色空间利用三个颜色分量的线性组合来表示颜色,任何颜色都与这三个分量有关,而且这三个分量是高度相关的,所以连续变换颜色时并不直观,想对图像的颜色进行调整需要更改这三个分量才行。
-
自然环境下获取的图像容易受自然光照、遮挡和阴影等情况的影响,即对亮度比较敏感。而 RGB 颜色空间的三个分量都与亮度密切相关,即只要亮度改变,三个分量都会随之相应地改变,而没有一种更直观的方式来表达。
-
在图像处理中使用较多的是 HSV 颜色空间,它比 RGB 更接近人们对彩色的感知经验。非常直观地表达颜色的色调、鲜艳程度和明暗程度,方便进行颜色的对比。
H(色调/hue) |
S(饱和度/saturation) |
V(明度/Value) |
2.cvtColor()
void cv::cvtColor(InputArray src, OutputArray dst, int code, int dstCn=0)
- src:输入图像,可以是Mat类型的图像或者其他支持的图像数据结构。
- dst:输出图像,用于存储转换后的图像。
- code:颜色空间转换的代码,例如CV_BGR2GRAY表示将BGR颜色空间转换为灰度图像。
- dstCn:输出图像的通道数,如果为0,则自动根据code参数确定通道数。
3.inRange()
void inRange(InputArray src, InputArray lowerb,InputArray upperb, OutputArray dst);
void inRange(image, Scalar(hmin,smin,vmin), Scalar(hmax,smax,vmax), image);
//typedef Vec<double, 4> Scalar;
python:
c++:
4.适应光线
光线较暗 -> 暗色调 ; 增加饱和度S ;减小亮度V
光线较亮 -> 亮色调 ; 减小饱和度S ;增大亮度V
(2).形态操作
1.腐蚀
腐蚀的基本概念就像土壤侵蚀一样,只侵蚀前景对象的边界(总是尽量保持前景为白色)。那它有什么作用呢?内核在图像中滑动(如二维卷积)。只有当内核下的所有像素都为 1 时,原始图像中的像素(1 或 0)才会被视为 1,否则会被侵蚀(变为零)。
C++: void erode(InputArray src,OutputArray dst,InputArray kernel,Point anchor=Point(-1,-1),int iterations=1,int borderType=BORDER_CONSTANT,const Scalar& borderValue=morphologyDefaultBorderValue());
int g_nStructElementSize = 3; //结构元素(内核矩阵)的尺寸//获取自定义核
Mat element = getStructuringElement(MORPH_RECT,Size(2*g_nStructElementSize+1,2*g_nStructElementSize+1),Point( g_nStructElementSize, g_nStructElementSize ));
2.膨胀
它与腐蚀正好相反。这里,如果内核下至少有一个像素为“1”,则像素元素为“1”。所以它会增加图像中的白色区域,或者增加前景对象的大小。通常情况下,在去除噪音的情况下,腐蚀后会膨胀。因为,腐蚀消除了白噪声,但它也缩小了我们的对象。所以我们扩大它。由于噪音消失了,它们不会再回来,但我们的目标区域会增加到腐蚀之前的状态。它还可用于连接对象的断开部分。
C++: void dilate(InputArray src,OutputArray dst,InputArray kernel,Point anchor=Point(-1,-1),int iterations=1,int borderType=BORDER_CONSTANT,const Scalar& borderValue=morphologyDefaultBorderValue()
);
3.开/闭运算
-
开运算(Opening Operation),其实就是先腐蚀后膨胀的过程。开运算可以用来消除小物体、在纤细点处分离物体、平滑较大物体的边界的同时并不明显改变其面积。
-
先膨胀后腐蚀的过程称为闭运算(Closing Operation),闭运算能够排除小型黑洞(黑色区域)。
C++: void morphologyEx(
InputArray src,
OutputArray dst,
int op,
InputArraykernel,
Pointanchor=Point(-1,-1),
intiterations=1,
intborderType=BORDER_CONSTANT,
constScalar& borderValue=morphologyDefaultBorderValue()
);
第三个参数,int类型的op,表示形态学运算的类型,可以是如下之一的标识符:
- MORPH_OPEN – 开运算(Opening operation)
- MORPH_CLOSE – 闭运算(Closing operation)
- MORPH_GRADIENT -形态学梯度(Morphological gradient)
- MORPH_TOPHAT - “顶帽”(“Top hat”)
- MORPH_BLACKHAT - “黑帽”(“Black hat“)
- MORPH_ERODE-“腐蚀”
- MORPH_DILATE-“膨胀”
c++
python
4.error
problem : /…/lib/libstdc++.so.6: version `GLIBCXX_3.4.30’ not found
solve : 系统环境下 /usr/lib/x86_64-linux-gnu/libstdc++.so.6 文件含有GLIBCXX_3.4.30版本,而anaconda环境下libstdc++.so.6文件含有的最高版本为GLIBCXX_3.4.29,因此有了前面的报错。
rm libstdc++.so
rm libstdc++.so.6
ln -s /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.32 libstdc++.so
ln -s /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.32 libstdc++.so.6