神经网络系列---计算图基本原理


文章目录

  • 计算图
    • 符号微分
      • 符号微分的步骤
      • 示例
      • 符号微分在计算图中的使用
      • 总结
    • 数值微分
      • 前向差分法
      • 中心差分法
      • 数值微分的使用
      • 注意事项
      • 总结
    • 自动微分
      • 1. 基本原理
      • 2. 主要类型
      • 3. 计算图
      • 4. 应用
      • 5. 工具和库
      • 6. 优点和缺点
    • 计算图
      • 1. **计算图的建立**
      • 2. **前向传播**
      • 3. **反向传播**
      • 4. **链式法则和梯度计算**
      • 5. **优点**
      • 例子:
        • 步骤1: 定义变量和运算
        • 步骤2: 创建节点
        • 步骤3: 创建边
        • 步骤4: 执行前向传播
        • 步骤5: (可选)执行反向传播


计算图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

符号微分

在这里插入图片描述

符号微分(Symbolic Differentiation)是一种使用数学表达式来表示微分或导数的技术。与数值微分不同,符号微分不是通过逼近来计算导数,而是直接处理数学表达式,得到一个精确的表达式,表示该函数的导数。

符号微分的步骤

  1. 表达式定义:首先,你需要一个表达式,例如一个多项式或任何可以微分的数学函数。

  2. 应用微分规则:然后,你会应用一系列微分规则(如乘积规则、商规则、链式法则等)来对表达式进行微分。

  3. 简化表达式:最后,你可能需要使用一些代数技巧来简化得到的导数表达式。

示例

假设你有一个函数 f ( x ) = x 2 + 3 x + 2 f(x) = x^2 + 3x + 2 f(x)=x2+3x+2,并且你想要找到其导数。通过符号微分,你可以应用基本的导数规则:

  • d d x x n = n ⋅ x n − 1 \frac{d}{dx} x^n = n \cdot x^{n-1} dxdxn=nxn1
  • d d x c = 0 \frac{d}{dx} c = 0 dxdc=0 (其中 c c c 是常数)
  • 线性函数的导数等于其系数

这样,你可以找到 f ( x ) f(x) f(x)的导数:

f ′ ( x ) = 2 ⋅ x 1 + 3 ⋅ 1 + 0 = 2 x + 3 f'(x) = 2 \cdot x^1 + 3 \cdot 1 + 0 = 2x + 3 f(x)=2x1+31+0=2x+3

符号微分在计算图中的使用

在深度学习中,符号微分经常与计算图结合使用:

  1. 前向传播:通过计算图表示模型的前向计算。
  2. 符号微分:应用符号微分来表示每个操作的局部导数。
  3. 反向传播:使用链式法则和计算图中的局部导数来计算整个模型的梯度。

这个过程允许深度学习框架自动计算模型的梯度,这是训练神经网络时所必需的。

总结

符号微分提供了一种精确、直接的方式来计算导数。在深度学习和其他科学计算应用中,通过结合计算图,符号微分使得自动求导和梯度下降优化变得可行和高效。不过,对于非常复杂的表达式,符号微分可能导致表达式膨胀,从而增加了计算复杂性。因此,有时可能会结合使用符号微分和数值微分方法。

数值微分

在这里插入图片描述

数值微分是一种近似计算函数导数的技术。与符号微分不同,数值微分不是通过解析地处理数学表达式来找到导数的精确形式,而是使用函数在特定点的数值来估计导数。

前向差分法

最简单的数值微分方法之一是前向差分法。假设你想要计算函数 f ( x ) f(x) f(x)在点 x x x处的导数,你可以使用以下公式:

f ′ ( x ) ≈ f ( x + h ) − f ( x ) h f'(x) \approx \frac{f(x + h) - f(x)}{h} f(x)hf(x+h)f(x)

其中 h h h是一个非常小的正数,称为步长。这个公式给出了在 x x x附近的函数的斜率的近似值。

中心差分法

前向差分方法的一个问题是,它可能不是非常精确,特别是当 h h h相对较大时。更精确的方法是中心差分法,使用以下公式:

f ′ ( x ) ≈ f ( x + h ) − f ( x − h ) 2 h f'(x) \approx \frac{f(x + h) - f(x - h)}{2h} f(x)2hf(x+h)f(xh)

中心差分通过计算 f ( x ) f(x) f(x) x x x附近的两点的平均斜率,通常提供了更好的近似。

数值微分的使用

数值微分用于许多不同的应用领域,包括:

  • 解析解不可用:当函数的导数很难或不可能解析地找到时,可以使用数值微分。

  • 深度学习的梯度检查:在深度学习中,数值微分通常用于梯度检查,以确保使用符号微分(或自动微分)计算的梯度是正确的。

  • 科学和工程应用:数值微分用于许多科学和工程应用,其中需要近似导数,但可能没有解析解。

注意事项

  • 选择步长:选择合适的步长 h h h是一个关键问题。太大的步长可能会导致近似不精确,而太小的步长可能会导致数值不稳定。

  • 数值不稳定:当涉及极小或极大的值时,数值微分可能会出现问题,因为计算机浮点数的精度有限。

  • 计算成本:数值微分通常比符号微分更慢,因为它需要多次评估函数。

总结

数值微分是一种有用的工具,特别是当解析解不可用或难以获得时。它提供了一种灵活而实用的方法来近似导数,但必须谨慎选择参数并注意可能的数值问题。在深度学习和其他领域,它通常与符号微分或自动微分结合使用。

自动微分

视频链接:【前向微分和正向微分怎么理解?
自动微分(Automatic Differentiation,简称AD)是一种高效计算函数导数(或梯度)的技术。它不同于数值微分和符号微分,因为它可以提供更高的数值稳定性和计算效率。下面是自动微分的更多细节:

1. 基本原理

自动微分基于链式法则进行,它通过计算机程序来逐步计算和追踪函数的局部导数。基本的想法是将复杂函数分解为一系列简单的元素函数(例如加法、乘法等),并依次计算这些函数的导数。

2. 主要类型

自动微分可以分为两种主要类型:

  1. 前向模式(Forward Mode)

在前向模式中,我们从输入向量开始,然后通过每一个操作前进,计算每一步的局部导数和全局雅可比矩阵的相应部分。给定一个函数 f : R n → R m f: \mathbb{R}^n \rightarrow \mathbb{R}^m f:RnRm,前向模式特别适合 n ≪ m n \ll m nm 的情况。

  1. 反向模式(Reverse Mode)

在反向模式中,我们首先进行一次正向传递来计算函数的输出,然后从输出向后进行一次传递来计算梯度或雅可比矩阵的每一部分。反向模式特别适合于 n ≫ m n \gg m nm 的情况,这也是为什么它被广泛应用于神经网络和深度学习,因为我们通常有许多输入和少量输出(例如损失函数)。

3. 计算图

自动微分常常依赖于一个计算图来表示和跟踪函数的计算过程。计算图是一种图形数据结构,其中每个节点代表一个操作,每个边代表数据流。

4. 应用

自动微分被广泛应用于各种领域,特别是在机器学习和优化问题中。它是训练神经网络时所用的反向传播算法的核心。

5. 工具和库

现有许多库和框架支持自动微分,如TensorFlow、PyTorch等,它们提供了方便的API来实现和使用自动微分技术。

6. 优点和缺点

  • 优点
    • 高数值稳定性:比数值微分更稳定。
    • 高效:特别是反向模式,它可以高效地计算梯度,尤其是对于有大量输入和少量输出的函数。
  • 缺点
    • 内存消耗:反向模式可能需要大量的内存来存储中间结果。
    • 实现复杂性:实现一个自动微分系统可能是非常复杂和技术性的。

计算图

自动微分通常是在计算图的基础上实现的。在计算图中,一个复杂函数被分解为多个简单的操作,这些操作被组织为一个有向图。现在,让我们更详细地了解自动微分和计算图之间的关系:

1. 计算图的建立

如我们前面所述,首先我们需要建立一个计算图,代表我们的函数。这涉及将函数分解为更简单的操作和变量,然后以有向图的形式表示这些操作和变量。

2. 前向传播

在计算图中,我们从输入变量开始,然后按照图中的顺序进行操作,直到我们计算出输出。这就是所谓的前向传播。

3. 反向传播

反向传播是自动微分的核心。在这一步,我们从输出开始,然后向后计算每一步的局部导数(或梯度)。这通常涉及应用链式法则,这是一种从输出向输入反向传播导数的方法。

4. 链式法则和梯度计算

通过使用链式法则,我们可以计算从输出到任何中间变量或输入的梯度。通过这种方式,我们可以得到我们想要的所有导数,而不是仅仅是输出相对于输入的导数。

5. 优点

  • 精确度:自动微分可以提供与解析解几乎相同的精确度。
  • 效率:它通常比数值微分方法更快、更稳定,尤其是对于具有许多变量的复杂函数。

例子:

使用给定的函数 f ( x , y ) = log ⁡ ( x ) + x ⋅ y − sin ⁡ ( y ) f(x, y) = \log(x) + x \cdot y - \sin(y) f(x,y)=log(x)+xysin(y),我们可以构建一个计算图,将该函数分解为多个基本操作。下面是计算图的创建步骤:

步骤1: 定义变量和运算

首先,我们识别并定义所有的基本变量和运算:

  1. 变量: x x x, y y y
  2. 运算:
    • log ⁡ ( x ) \log(x) log(x)
    • x ⋅ y x \cdot y xy
    • sin ⁡ ( y ) \sin(y) sin(y)
    • 加法和减法来组合上述结果
步骤2: 创建节点

然后,为每个变量和运算创建节点:

  1. 节点1(变量): x x x
  2. 节点2(变量): y y y
  3. 节点3(运算): log ⁡ ( x ) \log(x) log(x)
  4. 节点4(运算): x ⋅ y x \cdot y xy
  5. 节点5(运算): sin ⁡ ( y ) \sin(y) sin(y)
  6. 节点6(运算): log ⁡ ( x ) + x ⋅ y \log(x) + x \cdot y log(x)+xy
  7. 节点7(运算): log ⁡ ( x ) + x ⋅ y − sin ⁡ ( y ) \log(x) + x \cdot y - \sin(y) log(x)+xysin(y) (这是最终的输出节点)
步骤3: 创建边

接着,我们连接相应的边来形成有向图:

  1. 从节点1到节点3(表示 log ⁡ ( x ) \log(x) log(x) 的输入是 x x x
  2. 从节点1到节点4(表示 x ⋅ y x \cdot y xy 的一个输入是 x x x
  3. 从节点2到节点4(表示 x ⋅ y x \cdot y xy 的另一个输入是 y y y
  4. 从节点2到节点5(表示 sin ⁡ ( y ) \sin(y) sin(y) 的输入是 y y y
  5. 从节点3和节点4到节点6(表示他们的结果被加在一起)
  6. 从节点6和节点5到节点7(表示前者的结果减去后者的结果来得到最终输出)
步骤4: 执行前向传播

现在你可以执行前向传播来计算输出,按照操作的顺序一步步前进,直到达到输出节点。

步骤5: (可选)执行反向传播

如果你还打算进行自动微分,你可以实施反向传播算法来计算相对于 x x x y y y 的偏导数。

代码实现:

///
/// \brief The Variable class
/// 自动微分
class Variable
{
public://保存值double value;//保存梯度double grad;//当前的梯度是否启用bool isEnableGrad;Variable(double v = 0.0,bool requires_grad=true,double g=0.0) : value(v), isEnableGrad(requires_grad),grad(g){}std::function<void()> backpropFunc;std::vector<std::shared_ptr<Variable>> parents;//设置求导函数void setBackprop(const std::function<void()>& func){backpropFunc = func;}//添加组成当前节点的节点void addParent(const std::shared_ptr<Variable>& parent){parents.push_back(parent);}//反向传播void backward(){if (backpropFunc)backpropFunc();for (auto& parent : parents){parent->backward();}}};//加法
inline std::shared_ptr<Variable> operator+(const std::shared_ptr<Variable>& a, const std::shared_ptr<Variable>& b)
{auto result = std::make_shared<Variable>(a->value + b->value);result->setBackprop([=]() {if(a->isEnableGrad)a->grad += result->grad;if (b->isEnableGrad)b->grad += result->grad;});result->addParent(a);result->addParent(b);return result;
}
//减法
inline std::shared_ptr<Variable> operator-(const std::shared_ptr<Variable>& a, const std::shared_ptr<Variable>& b)
{auto result = std::make_shared<Variable>(a->value - b->value);result->setBackprop([=]() {if (a->isEnableGrad)a->grad += result->grad;if (b->isEnableGrad)b->grad -= result->grad;});result->addParent(a);result->addParent(b);return result;
}//乘法
inline std::shared_ptr<Variable> operator*(const std::shared_ptr<Variable>& a, const std::shared_ptr<Variable>& b)
{auto result = std::make_shared<Variable>(a->value * b->value);result->setBackprop([=]() {if (a->isEnableGrad)a->grad += b->value * result->grad;if (b->isEnableGrad)b->grad += a->value * result->grad;});result->addParent(a);result->addParent(b);return result;
}
// 除法
inline std::shared_ptr<Variable> operator/(const std::shared_ptr<Variable>& a, const std::shared_ptr<Variable>& b)
{if (b->value == 0.0) {std::cerr << "Error: Division by zero!" << std::endl;exit(1);}auto result = std::make_shared<Variable>(a->value / b->value);result->setBackprop([=]() {if (a->isEnableGrad)a->grad += (1.0 / b->value) * result->grad;if (b->isEnableGrad)b->grad -= (a->value / (b->value * b->value)) * result->grad;});result->addParent(a);result->addParent(b);return result;
}
// sin
inline std::shared_ptr<Variable> sin(const std::shared_ptr<Variable>& a)
{auto result = std::make_shared<Variable>(std::sin(a->value));result->setBackprop([=]() {if (a->isEnableGrad)a->grad += std::cos(a->value) * result->grad;});result->addParent(a);return result;
}
// cos
inline std::shared_ptr<Variable> cos(const std::shared_ptr<Variable>& a)
{auto result = std::make_shared<Variable>(std::cos(a->value));result->setBackprop([=]() {if (a->isEnableGrad)a->grad -= std::sin(a->value) * result->grad;  // 注意这里是减号,因为cos的导数是-sin});result->addParent(a);return result;
}// log
inline std::shared_ptr<Variable> log(const std::shared_ptr<Variable>& a)
{if (a->value <= 0.0) {std::cerr << "Error: Logarithm of non-positive number!" << std::endl;exit(1);}auto result = std::make_shared<Variable>(std::log(a->value));result->setBackprop([=]() {if (a->isEnableGrad)a->grad += (1.0 / a->value) * result->grad;  // 导数为 1/x});result->addParent(a);return result;
}// exp
inline std::shared_ptr<Variable> exp(const std::shared_ptr<Variable>& a)
{auto result = std::make_shared<Variable>(std::exp(a->value));result->setBackprop([=]() {if (a->isEnableGrad)a->grad += std::exp(a->value) * result->grad;  // 导数为 e^x});result->addParent(a);return result;
}int main() {auto x = std::make_shared<Variable>(2.0);  // 创建一个初值为2的变量xauto y = std::make_shared<Variable>(5.0,false);  // false 不计算y的梯度auto g = log(x) + x * y - sin(y);g->grad = 1.0;  // df/df = 1g->backward();std::cout << "df/dx = " << x->grad << std::endl;std::cout << "df/dy = " << y->grad << std::endl;return 0;
}

在这里插入图片描述在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/701498.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Stable Diffusion 绘画入门教程(webui)-ControlNet(Inpaint)

上篇文章介绍了语义分割Tile/Blur&#xff0c;这篇文章介绍下Inpaint&#xff08;重绘&#xff09; Inpaint类似于图生图的局部重绘&#xff0c;但是Inpain效果要更好一点&#xff0c;和原图融合会更加融洽&#xff0c;下面是案例&#xff0c;可以看下效果&#xff08;左侧原图…

7、Linux软件包管理、软件安装

三、软件包管理 1.文件上传与下载 用来做文件上传与下载的 先下载 lrzsz 工具 yum install lrzszrz 从windows 上传文件到 linux rz 会弹出一个选择框sz 从linux 上下载软件到 windows sz 文件名应用场景 修改上传配置文件上传 jar 包 2.RMP 包管理(了解一下就行) 2.1概述…

小红书商业体系,一文通

2024-02-23-小红书商业体系 大家好&#xff0c;我是周萝卜 今天分享一篇玩赚新媒的精华帖《小红书商业知识体系》 之所以分享这一篇&#xff0c;主要还是小红书的的确确是当下最值得深耕的赛道之一&#xff0c;而且这篇文章写的太好了&#xff0c;全程干货&#xff0c;毫无水…

旋转齿轮加载

效果演示 实现了一个旋转齿轮的动画效果。具体来说&#xff0c;页面背景为深灰色&#xff0c;中间有一个齿轮装置&#xff0c;包括四个齿轮。每个齿轮都有内部的齿轮条&#xff0c;整体呈现出旋转的效果。其中&#xff0c;齿轮2是顺时针旋转的&#xff0c;齿轮1、3、4是逆时针旋…

文件上传失败原因汇总(个人情况总结)

1.后端配置application里有服务限制大小 # Spring spring:servlet:multipart:max-file-size: 500MBmax-request-size: 500MB 2.如果你用了dubbo&#xff0c;要调整生产者和消费者超时时间以及payload大小&#xff0c;最好是dubbo自增策略&#xff0c;防止用了dubbo的服务端口冲…

纳斯达克大屏-投放需要知道的几个条件-大舍传媒

引言 随着移动互联网的快速发展&#xff0c;数字广告媒体广告越来越受到企业的关注。纳斯达克大屏作为全球最大的数字媒体广告投放平台之一&#xff0c;拥有广泛的受众和优质的媒体资源&#xff0c;吸引了众多企业的眼球。要想在纳斯达克大屏上投放广告&#xff0c;企业需要了…

【Oracle】玩转Oracle数据库(五):PL/SQL编程

前言 嗨&#xff0c;各位数据库达人&#xff01;准备好迎接数据库编程的新挑战了吗&#xff1f;今天我们要探索的是Oracle数据库中的神秘魔法——PL/SQL编程&#xff01;&#x1f52e;&#x1f4bb; 在这篇博文【Oracle】玩转Oracle数据库&#xff08;五&#xff09;&#xff1…

SAM轻量化的终点竟然是RepViT + SAM

本文首发&#xff1a;AIWalker&#xff0c;欢迎关注~~ 殊途同归&#xff01;SAM轻量化的终点竟然是RepViT SAM&#xff0c;移动端速度可达38.7fps。 对于 2023 年的计算机视觉领域来说&#xff0c;「分割一切」&#xff08;Segment Anything Model&#xff09;是备受关注的一项…

LeetCode 2476.二叉搜索树最近节点查询:中序遍历 + 二分查找

【LetMeFly】2476.二叉搜索树最近节点查询&#xff1a;中序遍历 二分查找 力扣题目链接&#xff1a;https://leetcode.cn/problems/closest-nodes-queries-in-a-binary-search-tree/ 给你一个 二叉搜索树 的根节点 root &#xff0c;和一个由正整数组成、长度为 n 的数组 qu…

工具分享:linux命令在线查询工具:让你的系统操作更加便捷

linux命令在线查询工具&#xff1a;让你的系统操作更加便捷 在Linux系统中&#xff0c;命令行是一种非常高效的操作方式&#xff0c;但对于一些不熟悉命令的用户来说&#xff0c;可能会感到有些困惑。不过&#xff0c;现在有了一个非常实用的工具——linux命令在线查询工具&…

计算机体系架构初步入门

&#x1f3ac;个人简介&#xff1a;一个全栈工程师的升级之路&#xff01; &#x1f4cb;个人专栏&#xff1a;高性能&#xff08;HPC&#xff09;开发基础教程 &#x1f380;CSDN主页 发狂的小花 &#x1f304;人生秘诀&#xff1a;学习的本质就是极致重复! 目录 1 计算机五大…

onlyoffice api开发

编写代码 按照https://api.onlyoffice.com/editors/basic编写代码 <html> <head><meta charset"UTF-8"><meta name"viewport"content"widthdevice-width, user-scalableno, initial-scale1.0, maximum-scale1.0, minimum-scal…

vue+node.js美食分享推荐管理系统 io551

&#xff0c;本系统采用了 MySQL数据库的架构&#xff0c;在开始这项工作前&#xff0c;首先要设计好要用到的数据库表。该系统的使用者有二类&#xff1a;管理员和用户&#xff0c;主要功能包括个人信息修改&#xff0c;用户、美食类型、美食信息、订单信息、美食分享、课程大…

C#之WPF学习之路(5)

目录 内容控件&#xff08;2&#xff09; TextBlock文字块 TextBox文本框 TextBoxBase基类 TextBox控件 RichTextBox富文本框 ToolTip控件&#xff08;提示工具&#xff09; Popup弹出窗口 Image图像控件 属性成员 事件成员 内容控件&#xff08;2&#xff09; Tex…

基于ILI9341的TFT-LCD屏幕显示要点总结

目录 LCD常用引脚及其功能 LCD驱动流程 RGB565 关键指令 GRAM自增方向 设置开始坐标和结束坐标 写GRAM指令 读GRAM指令 本文主要参考视频如下&#xff1a; 第37讲 LCD-TFTLCD原理与配置介绍-M4_哔哩哔哩_bilibili 说明&#xff1a; 目前&#xff0c;市面上常见的TFT-LC…

程序员可以做什么副业呢?

如果你经常玩知乎、看公众号&#xff08;软件、工具、互联网这几类的&#xff09;你就会发现&#xff0c;好多资源连接都变成了夸克网盘、迅雷网盘的资源链接。 例如&#xff1a;天涯神贴&#xff0c;基本上全是夸克、UC、迅雷网盘的资源链接。 有资源的前提下&#xff0c;迅雷…

Django模型基础(ORM、字段类型、字段参数、增删改查和分页)

模型基础&#xff1a; 字段类型&#xff1a; django根据属性的类型确定以下信息 当前选择的数据库⽀持字段的类型渲染管理表单时使⽤的默认html控件在管理站点最低限度的验证django会为表增加⾃动增⻓的主键列&#xff0c;每个模型只能有⼀个主键列&#xff0c;如果使⽤选项…

【Java程序设计】【C00316】基于Springboot的中小型制造企业质量管理系统(有论文)

基于Springboot的中小型制造企业质量管理系统&#xff08;有论文&#xff09; 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的中小型制造企业质量管理设计与实现&#xff0c;本系统有管理员以及工作人员二种角色权限 管理员&#xff1a;首页、个…

如何安装自定义模块?

自定义模块的安装方式如下&#xff1a; 进行了这些操作之后&#xff0c;你就会发现&#xff0c;自己写的代码块&#xff0c;成了可以调用的模块了。

软考41-上午题-【数据库】-关系代数运算3-外连接

一、外连接 连接的拓展&#xff0c;处理由于连接运算而缺失的信息。 1-1、回顾自然连接 1-2、左外连接 示例&#xff1a; 左边的表&#xff0c;数值是全的 1-3、右外连接 示例&#xff1a; 右边的表&#xff0c;数值是全的 1-4、全外连接 示例&#xff1a; 自然连接左外连接…