C++入门2

目录

前言:

引用

引用特性:

常引用:

使用场景:

1. 做参数

2. 做返回值

3.引用做返回值(方便读写返回变量)

传值、传引用效率比较:

引用和指针的区别:

内联函数

auto关键字(C++11)

auto的使用细则:

1.auto与指针和引用结合起来使用

2. 在同一行定义多个变量

auto不能推导的场景:

1. auto不能作为函数的参数

2. auto不能直接用来声明数组

3. 为了避免与C++98中的auto发生混淆,C++11只保留了auto作为类型指示符的用法

4. auto在实际中最常见的优势用法就是跟以后会讲到的C++11提供的新式for循环,还有lambda表达式等进行配合使用。 

指针空值nullptr(C++11)

C++98中的指针空值


前言:

 从上一章开始我们就正式将要开启C++的大门,本章承接上一章介绍C++入门所需要掌握和学习的知识,方便我们彻底打开C++的大门。 上一章的博客:C++入门-CSDN博客

引用

引用 不是新定义一个变量,而 是给已存在变量取了一个别名 ,编译器不会为引用变量开辟内存空
间,它和它引用的变量 共用同一块内存空间。
比如我们一提到“花和尚”我们就会自然联想到水浒传里的鲁智深,“花和尚”就是鲁智深的别名,也就是鲁智深的外号。

引用的使用方式:类型& 引用变量名(对象名) = 引用实体;

void TestRef()
{int a = 10;int& ra = a;//<====定义引用类型printf("%p\n", &a);printf("%p\n", &ra);
}

引用类型必须和引用实体同种类型的 

引用特性:

1. 引用在 定义时必须初始化
2. 一个变量可以有多个引用
3. 引用一旦引用一个实体,再不能引用其他实体
void TestRef()
{int a = 10;// int& ra;   // 该条语句编译时会出错int& ra = a;int& rra = a;printf("%p %p %p\n", &a, &ra, &rra);  //地址相同
}

常引用:

void TestConstRef()
{const int a = 10;//int& ra = a;   // 该语句编译时会出错,a为常量const int& ra = a;// int& b = 10; // 该语句编译时会出错,b为常量const int& b = 10;double d = 12.34;//int& rd = d; // 该语句编译时会出错,类型不同const int& rd = d;
}

使用场景:

1. 做参数

void Swap(int& left, int& right)
{int temp = left;left = right;right = temp;
}

2. 做返回值

int& Count()
{static int n = 0;n++;// ...return n;
}

3.引用做返回值(方便读写返回变量)


int& Add(int a, int b)
{int c = a + b;return c;
}int main()
{int& ret = Add(1, 2);Add(3, 4);cout << "Add(1, 2) is :"<< ret <<endl;return 0;
}
注意:如果函数返回时,出了函数作用域,如果返回对象还在(还没还给系统),则可以使用
引用返回,如果已经还给系统了,则必须使用传值返回。

 上述代码的输出结果为Add(1, 2) is : 7

 简单来说不传引用返回就是在Add函数的栈帧中存在c这个局部变量用来接收a+b的,函数结束前是要return c的,而这个时候c的内容会被复制到寄存器里面,再由寄存器把返回值赋值到main函数中接收返回值的变量。

而传引用返回就是将Add函数栈帧里的c这个地址上面的值,不经过寄存器的复制直接赋值到main函数中。

所以我们可以得知:
1、临时变量具有常性

2、全局变量/静态变量/堆上变量,这些就可以用引用返回。

3、返回变量除了函数作用域就代表生命周期结束了(局部变量)

4、引用返回就不存在临时变量

 在这行代码中,ret一直是c的别名,ret就是该函数栈帧c的别名,无论c改成什么,ret就是什么,因为c就是ret,ret就是c。

传值、传引用效率比较:

以值作为参数或者返回值类型,在传参和返回期间,函数不会直接传递实参或者将变量本身直
接返回,而是传递实参或者返回变量的一份临时的拷贝,因此用值作为参数或者返回值类型,效
率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低。

#include <time.h>
struct A{ int a[10000]; };
void TestFunc1(A a){}
void TestFunc2(A& a){}
void TestRefAndValue()
{A a;// 以值作为函数参数size_t begin1 = clock();for (size_t i = 0; i < 10000; ++i)TestFunc1(a);size_t end1 = clock();// 以引用作为函数参数size_t begin2 = clock();for (size_t i = 0; i < 10000; ++i)TestFunc2(a);size_t end2 = clock();// 分别计算两个函数运行结束后的时间cout << "TestFunc1(A)-time:" << end1 - begin1 << endl;
c    out << "TestFunc2(A&)-time:" << end2 - begin2 << endl;
}

 通过上述代码的比较,发现传值和指针在作为传参以及返回值类型上效率相差很大
 

引用和指针的区别:
 

在语法概念上引用就是一个别名,没有独立空间,和其引用实体共用同一块空间。

int main()
{int a = 10;int& ra = a;cout<<"&a = "<<&a<<endl;cout<<"&ra = "<<&ra<<endl;return 0;
}

在底层实现上实际是有空间的,因为引用是按照指针方式来实现的。

int main()
{int a = 10;int& ra = a;ra = 20;int* pa = &a;*pa = 20;return 0;
}

 

引用和指针的不同点:

1. 引用概念上定义一个变量的别名,指针存储一个变量地址。
2. 引用在定义时必须初始化,指针没有要求
3. 引用在初始化时引用一个实体后,就不能再引用其他实体,而指针可以在任何时候指向任何
一个同类型实体
4. 没有NULL引用,但有NULL指针
5. 在sizeof中含义不同:引用结果为引用类型的大小,但指针始终是地址空间所占字节个数(32
位平台下占4个字节)
6. 引用自加即引用的实体增加1,指针自加即指针向后偏移一个类型的大小
7. 有多级指针,但是没有多级引用
8. 访问实体方式不同,指针需要显式解引用,引用编译器自己处理
9. 引用比指针使用起来相对更安全

总结一下:
1、引用是别名,不开空间,指针是地址,需要开空间存储地址

2、引用必须初始化,指针可以初始化也可以不出初始化

3、引用不能改变指向,指针可以

4、引用相对更安全,没有空引用,但是由空指针和野指针。 

内联函数

以inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调
用建立栈帧的开销,内联函数提升程序运行的效率。

如果在上述函数前增加inline关键字将其改成内联函数,在编译期间编译器会用函数体替换函数的
调用。
查看方式:
1. 在release模式下,查看编译器生成的汇编代码中是否存在call Add
2. 在debug模式下,需要对编译器进行设置,否则不会展开(因为debug模式下,编译器默认不
会对代码进行优化,以下给出vs2013的设置方式)

1. inline是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会
用函数体替换函数调用,缺陷:可能会使目标文件变大,优势:少了调用开销,提高程序运
行效率。
2. inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建
议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、不
是递归、且频繁调用的函数采用inline修饰,否则编译器会忽略inline特性

 

3.inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址
了,链接就会找不到

// F.h
#include <iostream>
using namespace std;
inline void f(int i);// F.cpp
#include "F.h"
void f(int i)
{cout << i << endl;
}// main.cpp
#include "F.h"
int main()
{f(10);return 0;
}链接错误:main.obj : error LNK2019: 无法解析的外部符号 "void __cdecl
f(int)" (?f@@YAXH@Z),该符号在函数 _main 中被引用

 内联函数其实就是展开,将原本需要寻找函数地址的地方变成一系列函数定义。内联函数仅仅适合多次调用以及数据较少的函数代码。

auto关键字(C++11)

随着程序越来越复杂,程序中用到的类型也越来越复杂,经常体现在:

1. 类型难于拼写
2. 含义不明确导致容易出错
在编程时,常常需要把表达式的值赋值给变量,这就要求在声明变量的时候清楚地知道表达式的
类型。然而有时候要做到这点并非那么容易,因此C++11给auto赋予了新的含义。

在早期C/C++中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量,但遗憾的
是一直没有人去使用它,大家可思考下为什么?
C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一
个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得。

int TestAuto()
{return 10;
}int main()
{int a = 10;auto b = a;auto c = 'a';auto d = TestAuto();cout << typeid(b).name() << endl;cout << typeid(c).name() << endl;cout << typeid(d).name() << endl;//auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化return 0;
}

使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto
的实际类型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编
译期会将auto替换为变量实际的类型。

auto的使用细则:

1.auto与指针和引用结合起来使用

用auto声明指针类型时,用auto和auto*没有任何区别,但用auto声明引用类型时则必须
加&

int main()
{int x = 10;auto a = &x;auto* b = &x;auto& c = x;cout << typeid(a).name() << endl;cout << typeid(b).name() << endl;cout << typeid(c).name() << endl;*a = 20;*b = 30;c = 40;return 0;
}

2. 在同一行定义多个变量

当在同一行声明多个变量时,这些变量必须是相同的类型,否则编译器将会报错,因为编译
器实际只对第一个类型进行推导,然后用推导出来的类型定义其他变量.

void TestAuto()
{auto a = 1, b = 2;auto c = 3, d = 4.0; // 该行代码会编译失败,因为c和d的初始化表达式类型不同
}

auto不能推导的场景:

1. auto不能作为函数的参数

// 此处代码编译失败,auto不能作为形参类型,因为编译器无法对a的实际类型进行推导
void TestAuto(auto a)
{}

2. auto不能直接用来声明数组

void TestAuto()
{int a[] = {1,2,3};auto b[] = {4,5,6};
}

3. 为了避免与C++98中的auto发生混淆,C++11只保留了auto作为类型指示符的用法


4. auto在实际中最常见的优势用法就是跟以后会讲到的C++11提供的新式for循环,还有lambda表达式等进行配合使用。
 

指针空值nullptr(C++11)

C++98中的指针空值

在良好的C/C++编程习惯中,声明一个变量时最好给该变量一个合适的初始值,否则可能会出现
不可预料的错误,比如未初始化的指针。如果一个指针没有合法的指向,我们基本都是按照如下
方式对其进行初始化 :

void TestPtr()
{int* p1 = NULL;int* p2 = 0;// ……
}

 NULL实际是一个宏,在传统的C头文件(stddef.h)中,可以看到如下代码:

#ifndef NULL
#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *)0)
#endif
#endif

可以看到,NULL可能被定义为字面常量0,或者被定义为无类型指针(void*)的常量。不论采取何
种定义,在使用空值的指针时,都不可避免的会遇到一些麻烦,比如:

void f(int)
{cout<<"f(int)"<<endl;
}void f(int*)
{cout<<"f(int*)"<<endl;
}int main()
{f(0);f(NULL);f((int*)NULL);return 0;
}

程序本意是想通过f(NULL)调用指针版本的f(int*)函数,但是由于NULL被定义成0,因此与程序的
初衷相悖。
在C++98中,字面常量0既可以是一个整形数字,也可以是无类型的指针(void*)常量,但是编译器
默认情况下将其看成是一个整形常量,如果要将其按照指针方式来使用,必须对其进行强转(void
*)0。
 

1. 在使用nullptr表示指针空值时,不需要包含头文件,因为nullptr是C++11作为新关键字引入
的。
2. 在C++11中,sizeof(nullptr) 与 sizeof((void*)0)所占的字节数相同。
3. 为了提高代码的健壮性,在后续表示指针空值时建议最好使用nullptr。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/701457.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

访问raw.githubusercontent.com失败问题的处理

1 问题 GitHub上的项目的有些资源是放在raw.githubusercontent.com上的&#xff0c;通常我们在安装某些软件的时候会从该地址下载资源&#xff0c;直接访问的话经常容易失败。 # 安装operator kubectl apply -f https://raw.githubusercontent.com/oceanbase/ob-operator/2.1…

R3F(React Three Fiber)经验篇

之前一直在做ThreeJS方向&#xff0c;整理了两篇R3F&#xff08;React Three Fiber&#xff09;的文档&#xff0c;这是经验篇&#xff0c;如果您的业务场景需要使用R3F&#xff0c;可以参考一下这个文档。下面是目录&#xff0c;按照需求自取。 基础篇 ⬇️ R3F&#xff08;…

Android 内存优化内存泄漏处理

一:匿名内部类/非静态内部类 匿名内部类的泄漏原因&#xff1a;匿名内部类会隐式地持有外部类的引用.当外部类被销毁时&#xff0c;内部类并不会自动销毁&#xff0c;因为内部类并不是外部类的成员变量&#xff0c; 它们只是在外部类的作用域内创建的对象&#xff0c;所以内部…

力扣细节题:翻转二叉树

细节一&#xff1a;递归采用前序递归 细节二&#xff1a;采用交换节点而不是交换数据因为左右树交换的同时左右树的所有子节点都要交换 细节三&#xff1a;采用外置函数因为return如果在本函数内操作会存在必须返回空指针的问题 /*** Definition for a binary tree node.* s…

01_02_mysql09_MySQL的数据目录

MySQL的数据目录 学习再总结宋红康老师课程内容1.MySQL8的主要目录结构 安装好MySQL8之后&#xff0c;查看如下的目录结构 find / -name mysql1.1数据库文件的存放路径 MySQL数据库文件的存放路径&#xff1a;/var/lib/mysql/ 1.2相关命令目录 相关命令目录&#xff1a;/u…

番外篇 | YOLOv5+DeepSort实现行人目标跟踪检测

前言:Hello大家好,我是小哥谈。DeepSort是一种用于目标跟踪的深度学习算法。它结合了目标检测和目标跟踪的技术,能够在视频中准确地跟踪多个目标,并为每个目标分配一个唯一的ID。DeepSort的核心思想是将目标检测和目标跟踪两个任务进行联合训练,以提高跟踪的准确性和稳定性…

创建vue3项目(基础)

首先打开自己的目录文件输入指令cmd 出现命令行工具 输入指令vue create 项目名称 按回车 选择第三个自己配置 根据需求选择 回车 选择自己需要的版本 出现这个 一直按回车大约5下或者6下 创建完毕 结束 感谢观看

Spring 中的AOP 以及与 AspectJ AOP 的区别

AOP到底是什么&#xff0c;有什么作用&#xff1a; AOP&#xff08;Aspect-Oriented Programming&#xff0c;面向切面编程&#xff09;&#xff1a; 能够将那些与业务无关&#xff0c;却为业务模块所共同调用的逻辑或责任&#xff08;例如事务处理、日志管理、权限控制等&…

【EAI 024】RoboVQA: Multimodal Long-Horizon Reasoning for Robotics

Paper Card 论文标题&#xff1a;RoboVQA: Multimodal Long-Horizon Reasoning for Robotics 论文作者&#xff1a;Pierre Sermanet, Tianli Ding, Jeffrey Zhao, et.al. 作者单位&#xff1a;Stanford University, UC Berkeley, Meta 论文原文&#xff1a;https://arxiv.org/a…

【Linux】部署单机项目(自动化启动)---(图文并茂详细讲解)

目录 一 准备工作 1.1 连接服务器拷贝文件 1.2 解压 二 JDK安装 2.1 配置坏境变量 2.2 查看版本 三 Tomcat(自启动) 3.1 复制启动命令的位置 3.2 添加命令相关配置文件 3.2.1 配置jdk及tomcat目录 3.2.2 添加优先级 3.3 设置自启动命令 3.4 开放端口 四 My…

3_怎么看原理图之协议类接口之I2C笔记

I2C只连接I2CSCL与I2CSDA两根线&#xff0c;即2线制异步串行总线。 I2CSCL与I2CSDA两根线需要上拉电阻&#xff0c;目的是让电平有确定的状态。 发完8bit数据后&#xff0c;第9个电平拉低SDA为低电平。 比如传一个数据A0x410100 0001 IIC总线有多个从机设备的通信&#xff0c…

Spring Boot 笔记 025 主界面

1.1 路由搭建 1.1.1 安装vue router npm install vue-router4 1.1.2 在src/router/index.js中创建路由器&#xff0c;并导出 import { createRouter, createWebHistory } from vue-router//导入组件 import LoginVue from /views/Login.vue import LayoutVue from /views/La…

Aidex移动端项目入门

运行效果 项目源码下载 若依-ruoyi-AiDex-Uniapp: 若依-Ruoyi APP 移动解决方案&#xff0c;基于uniappuView封装的一套基础模版&#xff0c;开箱即用&#xff0c;免费开源&#xff0c;一份代码多终端适配&#xff0c;支持H5、支付宝小程序、微信小程序、APP&#xff0c;实现了…

改进Yolov5目标检测与单目测距 yolo速度测量-pyqt界面-yolo添加注意力机制

当设计一个结合了 YOLOv5 目标检测、单目测距与速度测量以及 PyQt 界面的毕业设计时&#xff0c;需要考虑以下几个方面的具体细节&#xff1a; 计算机视觉、图像处理、毕业辅导、作业帮助、代码获取&#xff0c;私聊会回复! YOLOv5 目标检测&#xff1a; 首先&#xff0c;选择…

B树的介绍

R-B Tree 简介特性B树特性m阶B树的性质&#xff08;这些性质是B树规定的&#xff09; B树的搜索B树的添加B树的删除——非叶子结点 简介 R-B Tree又称为Red-Black Tree&#xff0c;红黑树。是一种特殊的二叉查找树&#xff0c;红黑树的每个节点上都有存储为表示结点的颜色&…

Camunda7.18流程引擎启动出现Table ‘camunda_platform_docker.ACT_GE_PROPERTY‘的解决方案

文章目录 1、问题描述2、原因分析3、解决方案3.1、方案一&#xff1a;降低mysql版本3.2、方案二&#xff1a;增加nullCatalogMeansCurrent参数&#xff08;推荐&#xff09; 4、总结 1、问题描述 需要在docker中&#xff0c;部署Camunda流程引擎。通过启动脚本camunda-platfor…

分布式架构(分布式ID+分布式事务)

分布式架构 分布式事务产生的场景&#xff1a; 跨JVM进程产生的分布式事务 单体系统访问多个数据库实例 多服务访问同一个数据库实例 CAP理论 C&#xff1a;一致性&#xff0c;指写操作后的读操作可以读取到最新的数据状态&#xff0c;当数据分布在多个节点上&#xff0…

flet 读取本地音频文件的信息,歌名,歌手,歌曲长度,封面

请先安装 pip install flet, tinytag 组件 tinytag 是用来读取音频文件的信息的 测试用最好找一个有封面的音频的文件, 我是windows电脑,打开预览模式,选中文件时候能够右边显示图片, 如下,我电脑上某个音频文件的封面 import flet as ft from tinytag import TinyTag import…

自动驾驶---行业发展及就业环境杂谈

进入21世纪以来&#xff0c;自动驾驶行业有着飞速的发展&#xff0c;自动驾驶技术&#xff08;L2---L3&#xff09;也逐渐落地量产到寻常百姓家。虽然最早期量产FSD的特斯拉有着深厚的技术积累&#xff0c;但是进入2010年以后&#xff0c;国内的公司也逐渐发展起来自己的自动驾…

YOLOv5算法进阶改进(18)— 引入动态蛇形卷积DSConv(ICCV2023 | 用于管状结构分割)

前言:Hello大家好,我是小哥谈。动态蛇形卷积(Dynamic Snake Convolution,简称DSConv)是一种用于图像处理和计算机视觉任务的卷积神经网络(CNN)操作。它是在传统的卷积操作基础上引入了动态蛇形路径的概念,以更好地捕捉图像中的细节和边缘信息。传统的卷积操作是在固定的…