改进Yolov5目标检测与单目测距 yolo速度测量-pyqt界面-yolo添加注意力机制

当设计一个结合了 YOLOv5 目标检测、单目测距与速度测量以及 PyQt 界面的毕业设计时,需要考虑以下几个方面的具体细节:

计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,私聊会回复!

  1. YOLOv5 目标检测:

    • 首先,选择合适的 YOLOv5 模型(如 YOLOv5s、YOLOv5m、YOLOv5l 或 YOLOv5x)以满足项目需求,权衡模型大小和性能之间的平衡。
    • 进行目标类别的标注和数据集的准备,确保训练数据的质量和多样性,以提高检测准确度。
    • 考虑实时性要求,优化模型推理速度,可以使用 ONNX 进行模型转换和加速,或者利用 TensorRT 进行模型部署和优化。
      在这里插入图片描述
  2. 单目测距与速度测量:

    • 实现单目测距功能时,可以利用物体在图像中的大小和相机内参进行距离估计,也可结合深度学习技术进行深度估计。
    • 速度测量可以通过目标在连续帧之间的位移来计算,也可以借助光流法等技术实现运动速度的测量。
    • 考虑误差分析和校正方法,确保测距和测速的准确性和稳定性,例如引入卡尔曼滤波器进行数据融合处理。
      在这里插入图片描述
  3. PyQt 界面设计:

    • 设计直观友好的用户界面,包括主界面、设置界面、结果展示界面等,使用户能够方便地进行操作和查看结果。
    • 添加交互功能,如实时显示检测结果、测距信息和速度信息,支持用户交互式操作,提升用户体验和系统的易用性。
    • 考虑美观性和响应速度,选择合适的布局、颜色和字体,优化界面加载速度,确保界面流畅和用户友好。
      在这里插入图片描述
      在 PyQt 中,可以利用 OpenCV 库来实现图片、视频和摄像头的输入,具体方法如下:
  4. 图片输入:

    • 加载图片文件:使用 OpenCV 的 imread 函数,将图片文件读入到内存中,返回一个 numpy 数组类型的图片对象。
      #qq-1309399183
      import cv2
      img = cv2.imread("image.jpg")
      
    • 在 PyQt 界面中显示图片:使用 PyQt 的 QLabel 组件,通过 setPixmap 方法将 OpenCV 读取的图片对象转换成 QPixmap 对象,并设置为标签的图像。
      from PyQt5.QtGui import QPixmap
      from PyQt5.QtWidgets import QLabel, QApplication
      import sysapp = QApplication(sys.argv)
      label = QLabel()
      pixmap = QPixmap.fromImage(img.data, img.shape[1], img.shape[0], QImage.Format_RGB888)
      label.setPixmap(pixmap)
      label.show()
      sys.exit(app.exec_())
      
  5. 视频输入:

    • 打开本地视频文件:使用 OpenCV 的 VideoCapture 函数,打开本地视频文件,创建一个视频捕捉对象。
      import cv2
      cap = cv2.VideoCapture("video.avi")
      
    • 打开网络视频流:同样使用 VideoCapture 函数,传入视频流的 URL 地址即可打开网络视频流。
      import cv2
      cap = cv2.VideoCapture("http://xxx.xxx.xxx.xxx:xxxx/xxx.m3u8")
      
    • 在 PyQt 界面中显示视频:使用 OpenCV 的 imshow 函数循环读取视频帧并在界面中展示,需要注意的是需要使用 PyQt 的方法将 OpenCV 的图像类型转换为 QImage 类型。
      from PyQt5.QtGui import QImage
      import syswhile True:ret, frame = cap.read()if not ret:breakimg = QImage(frame.data, frame.shape[1], frame.shape[0], QImage.Format_RGB888)label.setPixmap(QPixmap.fromImage(img))QApplication.processEvents()
      
  6. 摄像头输入:

    • 打开摄像头:同样使用 OpenCV 的 VideoCapture 函数,传入摄像头的索引号即可打开摄像头。
      import cv2
      cap = cv2.VideoCapture(0)
      
    • 在 PyQt 界面中显示摄像头视频:和视频输入类似,不同的是需要通过 QTimer 定时器来触发读取摄像头帧数并在界面中展示。
      from PyQt5.QtCore import QTimer
      import sysdef update():ret, frame = cap.read()if not ret:returnimg = QImage(frame.data, frame.shape[1], frame.shape[0], QImage.Format_RGB888)label.setPixmap(QPixmap.fromImage(img))timer = QTimer()
      timer.timeout.connect(update)
      timer.start(1000 // 30)
      app.exec_()
      
  7. YOLOv5 改进:

    • 可以尝试引入注意力机制、跨尺度特征融合等技术来改进 YOLOv5 的检测性能,提高小目标检测和边界框精度。
    • 结合数据增强、迁移学习等方法,优化模型的训练过程,提升模型的泛化能力和鲁棒性。
    • 进行模型压缩和加速,如剪枝、量化等技术,以降低模型计算复杂度和内存占用,提高推理速度和效率。
      在 YOLOv5 模型中添加 SE(Squeeze-and-Excitation)注意力机制可以提高模型的表示能力和泛化性能,具体实现步骤如下:
  8. SE 注意力模块:

    • 定义 Squeeze 操作:对输入张量进行全局平均池化操作,将特征映射压缩为一个通道。
      class Squeeze(nn.Module):def forward(self, x):return torch.squeeze(x.mean((2, 3)), dim=(-1, -2))
      
    • 定义 Excitation 操作:通过两个全连接层将 Squeeze 操作输出的通道数降低并再次扩展,作为权重系数与原始特征相乘,实现特征的加权和。
      class Excitation(nn.Module):def __init__(self, channels, reduction=16):super(Excitation, self).__init__()mid_channels = max(channels // reduction, 1)self.fc1 = nn.Linear(channels, mid_channels)self.fc2 = nn.Linear(mid_channels, channels)self.relu = nn.ReLU(inplace=True)def forward(self, x):out = self.fc1(x)out = self.relu(out)out = self.fc2(out)out = self.sigmoid(out)out = out.unsqueeze(-1).unsqueeze(-1)return x * out
      
    • 将 Squeeze 和 Excitation 操作组合在一起,形成 SE 注意力模块:
      class SE(nn.Module):def __init__(self, channels, reduction=16):super(SE, self).__init__()self.squeeze = Squeeze()self.excitation = Excitation(channels, reduction)def forward(self, x):out = self.squeeze(x)out = self.excitation(out)return out
      
  9. 基于 YOLOv5 的改进:

    • 在 YOLOv5 模型中,SE 注意力模块可以应用在每个卷积层的输出上,以对特征图进行加权处理。
      class Conv(nn.Module):def __init__(self, ch_in, ch_out, k=1, s=1, p=None, g=1, act=True, se=False):super(Conv, self).__init__()self.conv = nn.Conv2d(ch_in, ch_out, kernel_size=k, stride=s, padding=p, groups=g, bias=False)self.bn = nn.BatchNorm2d(ch_out)self.act = nn.SiLU() if act else nn.Identity()self.se = SE(ch_out) if se else nn.Identity()def forward(self, x):out = self.conv(x)out = self.bn(out)out = self.act(out)out = self.se(out)return out
      
    • 将 Conv 模块中的参数 se 设置为 True,即可对特定的卷积层添加 SE 注意力模块。

通过细致设计和实施上述方案,可以打造一款功能完善、性能优越的毕业设计项目,展现出对目标检测与测量技术的深度理解和创新应用,为未来相关领域的研究和发展提供有益的参考和启示。

最后,看下方推广,或主页左下角推广!计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,私聊会回复!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/701438.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

B树的介绍

R-B Tree 简介特性B树特性m阶B树的性质(这些性质是B树规定的) B树的搜索B树的添加B树的删除——非叶子结点 简介 R-B Tree又称为Red-Black Tree,红黑树。是一种特殊的二叉查找树,红黑树的每个节点上都有存储为表示结点的颜色&…

Camunda7.18流程引擎启动出现Table ‘camunda_platform_docker.ACT_GE_PROPERTY‘的解决方案

文章目录 1、问题描述2、原因分析3、解决方案3.1、方案一:降低mysql版本3.2、方案二:增加nullCatalogMeansCurrent参数(推荐) 4、总结 1、问题描述 需要在docker中,部署Camunda流程引擎。通过启动脚本camunda-platfor…

分布式架构(分布式ID+分布式事务)

分布式架构 分布式事务产生的场景: 跨JVM进程产生的分布式事务 单体系统访问多个数据库实例 多服务访问同一个数据库实例 CAP理论 C:一致性,指写操作后的读操作可以读取到最新的数据状态,当数据分布在多个节点上&#xff0…

flet 读取本地音频文件的信息,歌名,歌手,歌曲长度,封面

请先安装 pip install flet, tinytag 组件 tinytag 是用来读取音频文件的信息的 测试用最好找一个有封面的音频的文件, 我是windows电脑,打开预览模式,选中文件时候能够右边显示图片, 如下,我电脑上某个音频文件的封面 import flet as ft from tinytag import TinyTag import…

自动驾驶---行业发展及就业环境杂谈

进入21世纪以来,自动驾驶行业有着飞速的发展,自动驾驶技术(L2---L3)也逐渐落地量产到寻常百姓家。虽然最早期量产FSD的特斯拉有着深厚的技术积累,但是进入2010年以后,国内的公司也逐渐发展起来自己的自动驾…

YOLOv5算法进阶改进(18)— 引入动态蛇形卷积DSConv(ICCV2023 | 用于管状结构分割)

前言:Hello大家好,我是小哥谈。动态蛇形卷积(Dynamic Snake Convolution,简称DSConv)是一种用于图像处理和计算机视觉任务的卷积神经网络(CNN)操作。它是在传统的卷积操作基础上引入了动态蛇形路径的概念,以更好地捕捉图像中的细节和边缘信息。传统的卷积操作是在固定的…

读书笔记-增强型分析:AI驱动的数据分析、业务决策与案例实践

目录 前言 运用人工智能技术,可以使人类社会变得更美好。人们总是期待产品更适合、服务更贴心、生活更便利。在实践中,技术给企业赋能,企业通过优质的产品和服务满足社会,提升人类福祉。很多金融企业已经开始尝试向潜在客户推送…

Uniapp小程序开发-底部tabbar的开发思路

文章目录 前言一、uniapp 实现 tabbar二、图标使用网络图片后端返回tabbar信息uniapp方式中的setTabBarItem 总结 前言 记录uniapp 开发小程序的底部tabbar ,这里讨论的不是自定义tabbar的情况。而是使用wx.setTabBarItem(Object object) 这个api的情况。关于custo…

【Linux进程】进程状态---进程僵尸与孤儿

📙 作者简介 :RO-BERRY 📗 学习方向:致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 📒 日后方向 : 偏向于CPP开发以及大数据方向,欢迎各位关注,谢谢各位的支持 目录 1.进程排队2.进程状态…

【Ubuntu】通过网线连接两台电脑以实现局域网连接的方法

有时我们需要将多台计算机连接在一起,以便实现数据共享、资源访问等功能。本文将介绍如何通过网线连接两台运行Ubuntu操作系统的电脑,以便它们能够直接通信,从而实现局域网连接。 1. 准备工作 在开始之前,请准备好: …

[云原生] 二进制安装K8S(上)搭建单机matser、etcd集群和node节点

一、单机matser预部署设计 目前Kubernetes最新版本是v1.25,但大部分公司一般不会使用最新版本。 目前公司使用比较多的:老版本是v1.15,因为v1.16改变了很多API接口版本,国内目前使用比较多的是v1.18、v1.20。 组件部署&#xff…

WordPress前端如何使用跟后台一样的Dashicons图标字体?

很多站长都喜欢在站点菜单或其他地方添加一些图标字体,常用的就是添加Font Awesome 图标和阿里巴巴矢量库图标iconfont。其实我们使用的 WordPress 本身就有一套管理员使用的官方图标字体 Dashicons,登录我们站点后台就能看到这些图标字体。那么有没有可…

力扣思路题:丑数

此题的思路非常奇妙,可以借鉴一下 bool isUgly(int num){if(num0)return false;while(num%20)num/2;while(num%30)num/3;while(num%50)num/5;return num1; }

18个惊艳的可视化大屏(第六辑):地图焦点

本期带来的都是以地图作为视觉焦点的可视化大屏页面。

动态规划课堂1-----斐波那契数列模型

目录 动态规划的概念: 动态规划的解法流程: 题目: 第 N 个泰波那契数 解法(动态规划) 代码: 优化: 题目:最小花费爬楼梯 解法(动态规划) 解法1: 解…

独立站建站全攻略:从0到1打造专属在线商业平台

独立站建站全攻略:从0到1打造专属在线商业平台 随着互联网的普及和发展,越来越多的企业和个人开始认识到拥有一个独立站的重要性。独立站不仅可以提升品牌形象,还能为企业带来更多的流量和潜在客户。本文将为大家详细介绍独立站建站的全过程…

【深度学习笔记】卷积神经网络——汇聚层(池化层)

汇聚层(池化层) 通常当我们处理图像时,我们希望逐渐降低隐藏表示的空间分辨率、聚集信息,这样随着我们在神经网络中层叠的上升,每个神经元对其敏感的感受野(输入)就越大。 而我们的机器学习任…

VsCode的leetcode插件无法登录

前提 想使用VsCode的leetcode插件进行刷题,然后按照网上的教程进行安装下载,但是到了登录这一步,死活也登录不了,然后查看log一直报的错误是invalid password。 解决方法 首先确定在插件中设置的站点是Leetcode中国&#xff0c…

图像处理新框架 | 语义与复原指令双引擎,谷歌研究院提出文本驱动图像处理框架TIP

本文首发: AIWalker 欢迎关注AIWalker,底层视觉与基础AI技术 https://arxiv.org/abs/2312.14091 https://github.com/Picsart-AI-Research/HD-Painter 基于文本到图像扩散模型的空前成功,文本引导图像修复的最新进展已经可以生成非常逼真和视觉上合理的结…

centos7部署单机项目和自启动

centos7部署单机项目和服务器自启动 1.安装jdk和tomact1.1上传jdk、tomcat安装包1.2解压两个工具包1.3.配置并且测试jdk安装1.4.启动tomcat1.5.防火墙设置1.6配置tomcat自启动 2.安装mysql2.1卸载mariadb,否则安装MySql会出现冲突(先查看后删除再查看)2.2在线下载My…