【AI大模型】ChatGPT在地学、GIS、气象、农业、生态、环境等领域中的高级应用

 以ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问为代表AI大语言模型带来了新一波人工智能浪潮,可以面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、论文检索、写作、翻译、润色、文献辅助阅读、文献信息提取、辅助论文审稿、新闻撰写、科技绘图、地学绘图(GIS地图绘制)、概念图生成、图像识别、教学课件、教学案例生成、基金润色、专业咨询、文件上传和处理、机器/深度学习训练与模拟、大模型API二次开发等特定任务,生成文本、图片、代码、语音、视频等不同形式的数据、模式和内容成为不少科研工作者的第二大脑。通过大量生物、地球、农业、气象、生态、环境科学领域中案例,解锁大模型在科研、办公中的高级应用,一起探索如何优雅地使用大模型。

关注科研技术平台

专题一、开启大模型

1 开启大模型

1) 大模型的发展历程与最新功能

2) 大模型的强大功能与应用场景

3) 国内外经典大模型(ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问等)

4) 如何优雅使用大模型

案例1.1:开启不同平台的大模型

案例1.2:GPT不同版本的使用

案例1.3:大模型文件上传和处理

专题二、基于ChatGPT大模型提问框架

2 提问框架(提示词、指令)

1) 专业大模型提示词,助你小白变专家

2) 超实用的通用提示词和提问框架

3) GPT store(GPT商店产品)及高级提问技巧

案例2.1:设定角色与投喂规则

案例2.2:行业专家指令合集

案例2.3:角色扮演与不同角度提问

案例2.4:分步提问与上下文关联

案例2.5:经典提问框架练习,提升模型效率

专题三、基于ChatGPT大模型的论文助手

3 基于AI大模型的论文助手

案例3.1:大模型论文润色中英文指令大全

案例3.2:使用大模型进行论文润色

案例3.3:使用大模型对英文文献进行搜索

案例3.4:使用大模型对英文文献进行问答和辅助阅读

案例3.5:使用大模型提取英文文献关键信息

案例3.6:使用大模型对论文进行摘要重写

案例3.7:使用大模型取一个好的论文标题

案例3.8:使用大模型写论文框架和调整论文结构

案例3.9:使用大模型对论文进行翻译

案例3.10:使用大模型对论文进行评论,辅助撰写审稿意见

案例3.11:使用大模型对论文进行降重

案例3.12:使用大模型查找研究热点

案例3.13:使用大模型对你的论文凝练成新闻和微信文案

案例3.14:使用大模型对拓展论文讨论

案例3.15:使用大模型辅助专著、教材、课件的撰写

专题四、基于ChatGPT大模型的数据清洗

4 基于ChatGPT的数据清洗

1) R语言和Python基础(勿需学会,能看懂即可)

2) 数据清洗方法(重复值、缺失值处理、异常值检验、标准化、归一化、数据长宽转换,数据分组聚合)

案例4.1:使用大模型指令随机生成数据

案例4.2:使用大模型指令读取数据

案例4.3:使用大模型指令进行数据清洗

案例4.4:使用大模型指令对农业气象数据进行预处理

案例4.5:使用大模型指令对生态数据进行预处理

专题五、基于ChatGPT大模型的统计分析

5 基于AI大模型的统计分析

1) 统计假设检验

2) 统计学三大常用检验及其应用场景

3) 方差分析、相关分析、回归分析

案例5.1:使用大模型对生态环境数据进行正态性检验、方差齐性检验

案例5.2:使用大模型进行t检验、F检验和卡方检验

案例5.3:使用大模型对生态环境数据进行方差分析、相关分析及回归分析

专题六、基于ChatGPT的经典统计模型

6 基于AI大模型的经典统计模型构建

案例6.1:基于AI辅助构建的混合线性模型在生态学中应用

案例6.2:基于AI辅助的全球尺度Meta分析及诊断、绘图

案例6.3:基于AI辅助的生态环境数据结构方程模型构建

案例6.4:基于AI辅助的贝叶斯优化及模型参数不确定性

专题七、基于ChatGPT大模型的机器学习

7 基于AI大模型的机器/深度学习

1) 机器/深度学习

2) AI大模型的底层逻辑和算法结构(GPT1-GPT4)

3) 机器学习监督学习(回归、分类)、非监督学习(降维、聚类)

4) 特征工程、数据分割、目标函数、参数优化、交叉验证、超参数寻优

5) 深度学习算法(神经网络、激活函数、交叉熵、优化器)

6) 卷积神经网络、长短期记忆网络(LSTM)

案例7.1:使用大模型指令构建回归模型(多元线性回归、随机森林、XGBoost、LightGBM等)

案例7.2:使用大模型指令构建分类模型(支持向量机、XGBoost等)

案例7.3:使用大模型指令构建降维模型

案例7.4:使用大模型指令构建聚类模型

案例7.5:使用大模型指令构建深度学习模型,实现预测和解释

专题八、ChatGPT的二次开发

8 基于AI大模型的二次开发

案例8.1:基于API构建自己的本地大模型

案例8.2:基于构建的本地大模型实现ChatGPT功能、模型评价和图像生成

案例8.3:ChatGPT Store构建方法

专题九、基于ChatGPT大模型的科研绘图

9 基于AI大模型的科研绘图

1) 使用大模型进行数据可视化

案例9.1:大模型科研绘图指定全集

案例9.2:使用大模型指令绘制柱状图(误差线)、散点图、相关网络图、热图、小提琴图、箱型图、雷达图、玫瑰图、气泡图、森林图、三元图、三维图等各类科研图

案例9.3:使用大模型指令对图形进行修改

专题十、基于ChatGPT大模型的GIS应用

10 基于AI大模型的GIS应用

1) R语言和Python空间数据处理主要方法

2) 基于AI大模型训练降尺度模型

3) 基于AI大模型处理矢量、栅格数据

4) 基于AI大模型处理多时相netCDF4数据

案例10.1:使用大模型绘制全球地图

案例10.2:使用大模型处理NASA气象多时相NC数据

案例10.3:使用大模型绘制全球植被类型分布图

案例10.4:使用大模型栅格数据并绘制全球植被生物量图

案例10.5:使用大模型处理遥感数据并进行时间序列分析

案例10.6:使用不同插值方法对气象数据进行插值

专题十一、基于ChatGPT大模型的项目基金助手

11 基于AI大模型的项目基金助手

1) 基金申请讲解

2) 基因申请助手

案例11.1:使用大模型进行项目选题和命题

案例11.2:使用大模型进行项目书写作和语言润色

案例11.3:使用大模型进行项目书概念图绘制

专题十二、基于大模型的AI绘图

12基于大模型的AI绘图

GPT DALL.E、Midjourney等AI大模型生成图片讲解

1) AI画图指令套路和参数设定

案例12.1:使用大模型进行图像识别

案例12.2:使用大模型生成图像指令合集

案例12.3:使用大模型指令生成概念图

案例12.4:使用大模型指令生成地球氮循环概念图

案例12.5:使用大模型指令生成土壤概念图

案例12.6:使用大模型指令生成病毒、植物、动物细胞结构图

案例12.7:使用大模型指令生成图片素材,从此不再缺图片素材

关注科研技术平台获取更多详情

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/696623.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024牛客(4)K题

登录—专业IT笔试面试备考平台_牛客网 using i64 long long; using ll long long; constexpr ll M 1e9 7; template<class Info> struct SegmentTree {int n;std::vector<Info> info;SegmentTree() : n(0) {}SegmentTree(int n_, Info v_ Info()) {init(n_, …

Vue样式绑定

1. 绑定 HTML class ①通过class名称的bool值判断样式是否被启用 <template><!--通过样式名称是否显示控制样式--><div :class"{ haveBorder: p.isBorder, haveBackground-color: p.isBackgroundcolor }">此处是样式展示区域</div><br /…

Linux篇:开发工具yum/vim/gcc/g++/Makefile/gdb

一. yum&#xff1a;软件包管理器 什么是软件包&#xff1f; 在Linux 下安装软件 , 一个通常的办法是下载到程序的源代码 , 并进行编译 , 得到可执行程序 . 但是这样太麻烦了, 于是有些人把一些常用的软件提前编译好 , 做成软件包 (可以理解成windows 上的安装程序) 放在…

内网穿透的应用-如何本地部署Elasticsearch搜索分析引擎实现并发布公网远程访问

文章目录 系统环境1. Windows 安装Elasticsearch2. 本地访问Elasticsearch3. Windows 安装 Cpolar4. 创建Elasticsearch公网访问地址5. 远程访问Elasticsearch6. 设置固定二级子域名 Elasticsearch是一个基于Lucene库的分布式搜索和分析引擎&#xff0c;它提供了一个分布式、多…

探索Flask框架:打造优雅而强大的Web应用

在当今互联网时代&#xff0c;Web应用的需求日益增长&#xff0c;而作为开发者&#xff0c;我们需要一个简洁明快、灵活可扩展的框架来满足这些需求。Flask框架作为一个Python微型框架&#xff0c;在其简洁的设计理念和丰富的扩展生态系统之间找到了完美的平衡&#xff0c;为我…

防御保护第六次作业

需求: 8&#xff0c;分公司内部的客户端可以通过域名访问到内部的服务器 9&#xff0c;假设内网用户需要通过外网的web服务器和pop3邮件服务器下载文件和邮件&#xff0c;内网的FTP服务器也需要接受外网用户上传的文件。针对该场景进行防病毒的防护。 10&#xff0c;我们需要针…

C++模板从入门到入土

1. 泛型编程 如果我们需要实现一个不同类型的交换函数&#xff0c;如果是学的C语言&#xff0c;你要交换哪些类型&#xff0c;不同的类型就需要重新写一个来实现&#xff0c;所以这是很麻烦的&#xff0c;虽然可以cv一下&#xff0c;有了模板就可以减轻负担。 下面写一个适…

基于springboot+vue的中小企业设备管理系统(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…

H 桥逆变方式介绍(双极性)

单极性控制和双极性控制是说IGBT四个管子的控制 前面所说的单极性控制是其中一个管子开通、关闭另外一个管子持续开通 而双极性是四个管子中的两个管子同时导通&#xff0c;同时关断。彼此交替变化 所以当方波出现低电平时&#xff0c;是一对管子同时导通&#xff0c;出现高电…

2.21 Qt day2 菜单栏/工具栏/状态栏/浮动窗口、UI界面、信号与槽

思维导图 使用手动连接&#xff0c;将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中&#xff0c;在自定义的槽函数中调用关闭函数 将登录按钮使用qt5版本的连接到自定义的槽函数中&#xff0c;在槽函数中判断ui界面上输入的账号是否为"admin"&#xff0c;…

golang实现延迟队列(delay queue)

golang实现延迟队列 1 延迟队列&#xff1a;邮件提醒、订单自动取消 延迟队列&#xff1a;处理需要在未来某个特定时间执行的任务。这些任务被添加到队列中&#xff0c;并且指定了一个执行时间&#xff0c;只有达到指定的时间点时才能从队列中取出并执行。 应用场景&#xff1…

智慧驿站_智慧文旅驿站_轻松的驿站智慧公厕_5G智慧公厕驿站_5G模块化智慧公厕

多功能城市智慧驿站是在智慧城市建设背景下&#xff0c;所涌现的一种创新型社会配套设施。其中&#xff0c;智慧公厕作为城市智慧驿站的重要功能基础&#xff0c;具备社会配套不可缺少的特点&#xff0c;所以在应用场景上&#xff0c;拥有广泛的需求和要求。那么&#xff0c;城…

#12解决request中getReader()和getInputStream()只能调用一次的问题

目录 1、背景 2、解决方案 2.1、自定义HttpServletRequestWrapper 2.2、JsonRequestHeaderParamsHelper 2.3、HttpServletRequestReplacedFilter 2.4、使用 1、背景 当前系统Content-Type为application/json&#xff0c;参数接收方式采用RequestBody和RequestParam&#…

平时积累的FPGA知识点(10)

平时在FPGA群聊等积累的FPGA知识点&#xff0c;第10期&#xff1a; 41 ZYNQ系列芯片的PL中使用PS端送过来的时钟&#xff0c;这些时钟名字是自动生成的吗&#xff1f; 解释&#xff1a;是的。PS端设置的是ps_clk&#xff0c;用report_clocks查出来的时钟名变成了clk_fpga_0&a…

Linux篇:进程

一. 前置知识 1.1冯诺依曼体系结构 我们常见的计算机&#xff0c;如笔记本。我们不常见的计算机&#xff0c;如服务器&#xff0c;大部分都遵守冯诺依曼体系 为什么计算机要采用冯诺依曼体系呢&#xff1f; 在计算机出现之前有很多人都提出过计算机体系结构&#xff0c;但最…

时序数据库TimescaleDB,实战部署全攻略

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 哈喽&#xff01;大家好&#xff0c;我是【IT邦德】&#xff0c;江湖人称jeames007&#xff0c;10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】&#xff01;&#x1f61c;&am…

C++ Primer 笔记(总结,摘要,概括)——第5章 语句

目录 5.1 简单语句 5.2 语句作用域 5.3 条件语句 5.3.1 if语句 5.3.2 switch语句 5.4 迭代语句 5.4.1 while语句 5.4.2 传统的for语句 5.4.3 范围for语句 5.4.4 do while语句 5.5 跳转语句 5.5.1 break语句 5.5.2 continue语句 5.5.3 goto语句 5.6 try语句块和异常处理 5…

2024华北医院信息网络大会第二轮更新通知

大会背景 近年来&#xff0c;我国医疗行业信息化取得了飞跃式的发展&#xff0c;医疗信息化对医疗行业有着重要的支撑作用。2021年国家卫健委、中医药管理局联合印发《公立医院高质量发展促进行动&#xff08;2021-2025年&#xff09;》&#xff0c;提出重点建设“三位一体”智…

【青龙】快速搭建青龙面板,部署属于你自己的应用!

青龙面板是一个支持 Python3、JavaScript、Shell、Typescript 的定时任务管理平台。 废话不多说&#xff0c;直接开始。 这里使用一台 雨云 的云服务器作为演示。雨云注册地址&#xff1a;https://www.rainyun.com/ 优惠码&#xff1a;lz932 使用优惠码注册后绑定微信可获得8折…

【Chrono Engine学习总结】4-vehicle-4.3-两个vehicle碰撞测试

由于Chrono的官方教程在一些细节方面解释的并不清楚&#xff0c;自己做了一些尝试&#xff0c;做学习总结。 今天突发奇想&#xff0c;想试一下&#xff0c;是否可以实现两个vehicle的碰撞&#xff1f; 1、两辆vehicle的仿真 官方提供了demo_VEH_TwoCars这个demo&#xff0c…