做网站经常加班还是app/门户网站怎么做

做网站经常加班还是app,门户网站怎么做,wordpress主题 altea,手机网站格式商城目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 CNN(卷积神经网络)部分 4.2 GRU(门控循环单元)部分 4.3 Attention机制部分 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版…

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 CNN(卷积神经网络)部分

4.2 GRU(门控循环单元)部分

4.3 Attention机制部分

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

...................................................................%CNN-GRU-ATT
layers = func_model(Dim);%设置
%迭代次数
%学习率为0.001
options = trainingOptions('adam', ...       'MaxEpochs', 1500, ...                 'InitialLearnRate', 1e-4, ...          'LearnRateSchedule', 'piecewise', ...  'LearnRateDropFactor', 0.1, ...        'LearnRateDropPeriod', 1000, ...        'Shuffle', 'every-epoch', ...          'Plots', 'training-progress', ...     'Verbose', false);%训练
Net = trainNetwork(Nsp_train2, NTsp_train, layers, options);figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...'LineWidth',2,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]);legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
grid onsubplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...'LineWidth',2,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]);
legend('真实值', '预测值')
xlabel('测试样本')
ylabel('测试结果')
grid onsubplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);
116

4.算法理论概述

         CNN-GRU-Attention模型结合了卷积神经网络(CNN)、门控循环单元(GRU)和注意力机制(Attention)来进行时间序列数据的回归预测。CNN用于提取时间序列的局部特征,GRU用于捕获时间序列的长期依赖关系,而注意力机制则用于在预测时强调重要的时间步。

4.1 CNN(卷积神经网络)部分

        在时间序列回归任务中,CNN用于捕获局部特征和模式:

4.2 GRU(门控循环单元)部分

GRU用于捕捉时间序列的长期依赖关系:

4.3 Attention机制部分

最后,通过反向传播算法调整所有参数以最小化预测误差,并在整个训练集上迭代优化模型。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/695358.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Vue渗透】Vue站点渗透思路

原文地址 极核GetShell 前言 本文经验适用于前端用Webpack打包的Vue站点,阅读完本文,可以识别出Webpack打包的Vue站点,同时可以发现该Vue站点的路由。 成果而言:可能可以发现未授权访问。 识别Vue 识别出Webpack打包的Vue站…

FFmpeg的HEVC解码器源代码学习笔记-1

一直想写一个HEVC的码流解析工具,看了雷神264码流解析工具,本来想尝试模仿写一个相似的265码流分析工具,但是发现265的解码过程和结构体和264的不太一样,很多结构体并没有完全暴露出来,没有想到很好的方法获得量化参数…

自增a++和自减a--详细解析

1.自增、自减运算符是什么,有什么作用,需要注意什么? 、–;对当前变量值1、-1只能操作变量,不能操作字面量 2.自增、自减运算符放在变量前后有区别吗? 如果单独使用放前放后是没有区别的非单独使用:在变量前,先进行变量自增/…

unity学习(36)——角色选取界面(自制美工)

1.添加一个背景图片,记不住可以查之前的资料(4) 图片拖入asset,属性设成sprite;把图片拖到source image中;colour白色(透明,点一下右边的笔即可);material为…

SpringCloud-Gateway网关的使用

本文介绍如何再 SpringCloud 项目中引入 Gateway 网关并完成网关服务的调用。Gateway 网关是一个在微服务架构中起到入口和路由控制的关键组件。它负责处理客户端请求,进行路由决策,并将请求转发到相应的微服务。Gateway 网关还可以实现负载均衡、安全认…

vue大文件读取部分内容,避免重复加载大文件,造成流量浪费

使用场景:项目点云地图是pcd文件,但是文件可能上百兆,我需要获取到文件中的版本信息,跟本地的缓存文件做比较,如果不一致,才会加载整个文件。从而节省流量。 避免重复加载整个“.pcd文件,以最大…

【PX4学习笔记】04.QGC地面站的使用

目录 文章目录 目录PX4代码烧入PX4固件代码的烧入方式1PX4固件代码的烧入方式2 QGC地面站的基础使用连接地面站的方式查看关键的硬件信息 QGC地面站的Application Settings模块Application Settings模块-常规界面单位其他设置数据持久化飞机中的数传日志飞行视图计划视图自动连…

观察者模式, 发布-订阅模式, 监听器模式

观察者模式, 发布-订阅模式, 监听器模式 观察者模式 观察者模式是一种行为型设计模式, 定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新 角色模型和结构图 在观察者模式中,只有两种…

HarmonyOS Stage模型基本概念讲解

本文 我们来说harmonyos中的一种应用模型 Stage模型 官方提供了两种模型 一种是早期的 FA模型 另一种就是就是 harmonyos 3.1才开始的新增的一种模型 Stage模型 目前来讲 Stage 会成为现在乃至将来 长期推进的一种模型 也就是 无论是 现在的harmonyos 4.0 乃至 之后要发布的 …

IP地理位置查询定位:技术原理与实际应用

在互联网时代,IP地址是连接世界的桥梁,而了解IP地址的地理位置对于网络管理、个性化服务以及安全监控都至关重要。IP数据云将深入探讨IP地理位置查询定位的技术原理、实际应用场景以及相关的隐私保护问题,旨在为读者提供全面了解和应用该技术…

印刷机械故障诊断:虹科MSR165助力Müller Martini AG成功案例

在为杂志装订机开发新产品的过程中,作为印刷后处理机械领域的全球领导者,Mller Martini AG公司发现了传感器故障的问题。通过使用虹科MSR 微型加速度数据记录仪,成功地确定了故障的原因。 新杂志装订机中的三刀修整装置的故障部件是边缘传感器…

BOSS直聘招聘经验

招聘低端兼职岗位。流量很大,来的人通常实力也不足。 招聘高端兼职岗位。流量不多。来的人通常具备一定实力。 招聘高薪职位,流量一般,会有有实力的勾搭。 招聘低薪职位,流量一般。通常没什么实力。

使用 Optimum Intel 在英特尔至强上加速 StarCoder: Q8/Q4 及投机解码

引言 近来,随着 BigCode 的 StarCoder 以及 Meta AI 的 Code Llama 等诸多先进模型的发布,代码生成模型变得炙手可热。同时,业界也涌现出了大量的致力于优化大语言模型 (LLM) 的运行速度及易用性的工作。我们很高兴能够分享我们在英特尔至强 …

测试多线程架构的问题

在测试多线程架构时,需要考虑多个方面以确保系统的稳定性和性能。以下是一些关键问题,需要在测试过程中特别关注: 线程同步 多线程环境中,线程同步是非常重要的问题。由于多个线程可能同时访问共享资源,因此需要使用…

Linux环境下查看磁盘层级占用空间的解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

C++从入门到精通 第十三章(认识STL)

写在前面: 本系列专栏主要介绍C的相关知识,思路以下面的参考链接教程为主,大部分笔记也出自该教程,笔者的原创部分主要在示例代码的注释部分。除了参考下面的链接教程以外,笔者还参考了其它的一些C教材(比…

下一代自动化爬虫神器--playwright,所见即所得,配合逆向不要太香!!!

文章目录 1.Playwright介绍2.与 Selenium 和 pyppeteer 相比,Playwright 具有以下几个区别和优势3.在爬虫中使用 Playwright 的好处4.环境安装5.屏幕录制6.保留记录cookie信息7.playwright代码编写详解1.第一个Playwright脚本(1)同步模式&…

Redis之缓存穿透问题解决方案实践SpringBoot3+Docker

文章目录 一、介绍二、方案介绍三、Redis Docker部署四、SpringBoot3 Base代码1. 依赖配置2. 基本代码 五、缓存优化代码1. 校验机制2. 布隆过滤器3. 逻辑优化 一、介绍 当一种请求,总是能越过缓存,调用数据库,就是缓存穿透。 比如当请求一…

阿里云国际站如何助力餐饮行业出海?

近些年,中国企业出海方兴未艾。全球不同国家的经济政治诉求加剧了商业领域的博弈,全球产业供应链格局持续发生深刻变化。无论是海外建厂,还是海外找市场,中国产业链的全球布局蔚然成风,企业想突破现阶段瓶颈,谋求更好的…

⭐北邮复试刷题106. 从中序与后序遍历序列构造二叉树__递归分治 (力扣每日一题)

106. 从中序与后序遍历序列构造二叉树 给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。 示例 1: 输入:inorder [9,3,15,20,7], postor…