【算法 - 动态规划】最长回文子序列

上篇文章中,我们学习一个新的模型: 样本对应模型,该模型的套路就是:以结尾位置为出发点,思考两个样本的结尾都会产生哪些可能性

而前篇文章中的 纸牌博弈问题 属于 [L , R]上范围尝试模型。该模型给定一个范围,在该范围上进行尝试,套路就是 思考 [L ,R] 两端该如何取舍。

本篇文章我们通过一道中等难度的力扣题,再来熟悉 范围尝试模型 的套路,注意与 上篇文章的最长公共子序列 作对比哦!

力扣516. 最长回文子序列

给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。

子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

示例 1:

输入: s = “bbbab”

输出: 4

解释: 一个可能的最长回文子序列为 “bbbb” 。

示例 2:

输入: s = “cbbd”

输出: 2

解释: 一个可能的最长回文子序列为 “bb” 。

学会了 上篇 的 最长公共子序列 之后,这道题目就有一个讨巧的方法:

若翻转输入的字符串,那么原本的字符串与翻转后的字符串的 最长公共子序列 就是 最长回文子序列

只需稍加修改,就能套用上面的代码了!

代码

public static int palindromeSubsequence(String s) {char[] s1 = s.toCharArray();int N = s1.length;char[] s2 = new char[N];// 翻转 s 字符串for (int i = 0; i < N; i++) {s2[N - i - 1] = s1[i];}// 调用 判断最长公共子序列 的动态规划函数return longestCommonSubsequence(s1,s2);
}// 该函数是 上篇文章末尾 的 动态规划版 
public static int longestCommonSubsequence(char[] str1, char[] str2) {int N = str1.length;int M = str2.length;...
}

除了上面讨巧的办法外,我们依然采用最朴素的 暴力递归 来思考这道题目。

递归的准备

定义递归函数的功能: 返回 str 中 [L ... R] 范围上字符串的最长回文子序列。

思考递归需要的参数: str 字符串,两端范围 L, R。

明确递归的边界条件:

  • 当字符串长度为 1 即 L == R 时,找到了一个长度为 1 的回文序列,返回 1 。
  • 当字符串长度为 2 即 L == R - 1 时,若两个字符一致,即找到了一个长度为 2 的回文序列,返回 2 。否则返回 1。

思路

这道题就是典型的 范围尝试模型 ,因此,递归就可以按照 开头和结尾两端都会产生哪些可能性 的思路来划分情况:

  • 回文子序列 既不以 L 结尾,也不以 R 结尾;
  • 回文子序列 L 结尾,不以 R 结尾;
  • 回文子序列 不以 L 结尾, R 结尾;
  • 回文子序列 既以 L 结尾,也以 R 结尾。

因为要求 最长 回文子序列,因此要返回这四种情况当中的最大值。

代码

public static int palindromeSubsequence(String s) {if (s == null || s.length() == 0) {return 0;}char[] str = s.toCharArray();return process(str, 0, str.length - 1);
}public static int process(char[] str, int L, int R) {if (L == R) {return 1;}if (L == R - 1) {return str[L] == str[R] ? 2 : 1;}int p1 = process(str, L + 1, R - 1);int p2 = process(str, L, R - 1);int p3 = process(str, L + 1, R);int p4 = str[L] != str[R] ? 0 : (2 + process(str, L + 1, R - 1));return Math.max(Math.max(p1, p2), Math.max(p3, p4));
}

代码解释

注意: 第四种情况 p4 中,如果直接调用 process(str, L, R),则会产生死循环。为使递归正常运行,要将都以 LR 结尾单独拿出来判断,若相等,去掉两端相等的字符再进行递归调用,回文子序列的长度自然要加上两端 2 的长度。


下面我们通过画 dp 表,探寻该递归如何转化为更加优化的动态规划。

以 str = “abcb1a” 为例。

可变的参数有两个,判断长度范围的 LR。因此,需要设置一个二维的 dp 表数组,由于 L, R 的取值范围从 0 开始到字符串长度减一,因此数组大小设置为 dp[N][N]

根据递归函数中代码逻辑发现:

  1. 当字符串中仅剩一个字符时,回文长度为 1 ,其余均为 0。
    if (L == R) {return 1;}

因此 dp 数组对角线上的数值均为 1 。

  1. 当字符串长度为 2 ,若两个字符一致,即找到了一个长度为 2 的回文序列,返回 2 。否则返回 1。
    if (L == R - 1) {return str[L] == str[R] ? 2 : 1;}

  1. 普遍情况下,依赖 左,下,左下 三个地方的 最大值
    int p1 = process(str, L + 1, R - 1);int p2 = process(str, L, R - 1);int p3 = process(str, L + 1, R);int p4 = str[L] != str[R] ? 0 : (2 + process(str, L + 1, R - 1));return Math.max(Math.max(p1, p2), Math.max(p3, p4));


  1. 范围尝试模型的 dp 表最大特点是左下角无效。递归函数调用的是 process(str, 0, str.length - 1),因此最终答案应该取 dp[0][N-1]== 5。

动态规划代码

public static int palindromeSubsequence(String s) {if (s == null || s.length() == 0) {return 0;}if (s.length() == 1) {return 1;}char[] str = s.toCharArray();int N = str.length;int[][] dp = new int[N][N];dp[N - 1][N - 1] = 1;// 单独填写对角线和相邻斜线的值for (int i = 0; i < N - 1; i++) {dp[i][i] = 1;dp[i][i + 1] = str[i] == str[i + 1] ? 2 : 1;}// 从下往上 从左往右 找最大值填写// 递归中的 p1 情况不需要考虑了for (int i = N - 3; i >= 0; i--) {for (int j = i + 2; j < N; j++) {dp[i][j] = Math.max(dp[i][j - 1], dp[i + 1][j]);if (str[i] == str[j]) {dp[i][j] = Math.max(dp[i][j], dp[i + 1][j - 1] + 2);}}}return dp[0][N - 1];
}

代码解释

一图胜千言:

在递归版本中,红色分别依赖紫、蓝、黄,并 取最大值

    int p1 = process(str, L + 1, R - 1);int p2 = process(str, L, R - 1);int p3 = process(str, L + 1, R);int p4 = str[L] != str[R] ? 0 : (2 + process(str, L + 1, R - 1));return Math.max(Math.max(p1, p2), Math.max(p3, p4));

思考一下,紫色部分的值是怎么来的?它也同样依赖了左,下,左下 三个地方的 最大值。因此,紫色 部分一定不小于 蓝色 部分,同理 黄色 部分也一定不小于 蓝色 部分。
因为要求最大值,因此可以忽略掉蓝色部分 p1 的递归调用,只需考虑 p2, p3 的调用。

    dp[i][j] = Math.max(dp[i][j - 1], dp[i + 1][j]);if (str[i] == str[j]) {dp[i][j] = Math.max(dp[i][j], dp[i + 1][j - 1] + 2);}

因此在动态规划循环中排除了蓝色部分的情况,先求出紫色与黄色的最大值,只有当 str[L] == str[R] 时,再与蓝色部分比出最大值。

这就是使用 严格表依赖 的好处 —— 可以 做进一步的优化

总结

上篇文章和本文分别讲解了 最长公共子序列问题最长回文子序列问题 。看似很相似的题目,实际使用了两种不同的模型:样本对应模型范围尝试模型 。根据不同模型的套路相信小伙伴也能够轻松应对类似的题目了!

下篇文章我们将介绍一个综合性非常高的题目,并使用一个新的模型来应对,敬请期待吧~

~ 点赞 ~ 关注 ~ 不迷路 ~!!!

------------- 往期回顾 -------------
【算法 - 动态规划】最长公共子序列问题
【算法 - 动态规划】力扣 691. 贴纸拼词
【算法 - 动态规划】原来写出动态规划如此简单!
【算法 - 动态规划】从零开始学动态规划!(总纲)
【堆 - 专题】“加强堆” 解决 TopK 问题!
AC 此题,链表无敌!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/694958.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C 嵌入式系统设计模式 08:硬件代理模式

本书的原著为&#xff1a;《Design Patterns for Embedded Systems in C ——An Embedded Software Engineering Toolkit 》&#xff0c;讲解的是嵌入式系统设计模式&#xff0c;是一本不可多得的好书。 本系列描述我对书中内容的理解。本文章描述访问硬件的设计模式之一&…

【C++语法基础】3.常用数学运算和位运算技巧(✨新手推荐阅读)

前言 在C编程中&#xff0c;数学运算是非常基础和常用的功能。C提供了多种数学运算符和函数&#xff0c;用于执行基本的数学计算&#xff0c;如加减乘除、取模运算以及位运算等。 一、加减乘除四则运算 C中的基本算术运算符包括加法()、减法(-)、乘法(*)、除法(/)。这些运算…

Chrome关闭时出现弹窗runtime error c++R6052,且无法关闭

环境&#xff1a; Chrome 版本121 Win10专业版 问题描述&#xff1a; Chrome关闭时出现弹窗runtime error cR6052&#xff0c;且无法关闭 解决方案&#xff1a; 1.任务管理器打开&#xff0c;强制结束进程 2.再次打开谷歌浏览器&#xff0c;打开设置关于Chrome&#xff0…

IO进程线程day5作业

1、使用多线程完成两个文件的拷贝&#xff0c;第一个线程拷贝前一半&#xff0c;第二个线程拷贝后一半&#xff0c;主线程回收两个线程的资源 代码&#xff1a; #include<myhead.h>//定义文件拷贝函数 int copy_file(int start,int len) {int srcfd,destfd;//以只读的形…

Vue3之ref与reactive的基本使用

ref可以创建基本类型、对象类型的响应式数据 reactive只可以创建对象类型的响应式数据 接下来让我为大家介绍一下吧&#xff01; 在Vue3中&#xff0c;我们想让数据变成响应式数据&#xff0c;我们需要借助到ref与reactive 先为大家介绍一下ref如何使用还有什么注意点 我们需…

解决弹性布局父元素设置高自动换行,子元素均分高度问题(align-content: flex-start)

案例&#xff1a; <view class"abc"><view class"abc-item" v-for"(item,index) in 8" :key"index">看我</view> </view> <style lang"less">.abc{height: 100px;display: flex;flex-wrap: …

Web基础②nginx搭建与配置

目录 一.Nginx概述 1.定义 2.Nginx模块作用 &#xff08;1&#xff09;main模块 &#xff08;2&#xff09;stream服务模块 &#xff08;3&#xff09;邮件服务模块 &#xff08;4&#xff09;第三方模块 &#xff08;5&#xff09;events模块 &#xff08;6&#xff…

Python 进阶语法:JSON

1 什么是 JSON&#xff1f; 1.1 JSON 的定义 JSON 是 JavaScript Object Notation 的简写&#xff0c;字面上的意思是 JavaScript 对象标记。本质上&#xff0c;JSON 是轻量级的文本数据交换格式。轻量级&#xff0c;是拿它与另一种数据交换格式XML进行比较&#xff0c;相当轻…

Sora--首个大型视频生成模型

Sora--首个大型视频生成模型 胡锡进于2024年2月20日认为&#xff1a;台当局怂了 新的改变世界模拟器视觉数据转换视频压缩时空补丁&#xff08;Spacetime Laten Patches&#xff09;视频生成扩展变压器算法和模型架构结语 胡锡进于2024年2月20日认为&#xff1a;台当局怂了 **T…

六大设计原则 (SOLID)

一、设计原则概述 古人云: 有道无术,术可求.有术无道,止于术. 而设计模式通常需要遵循一些设计原则,在设计原则的基础之上衍生出了各种各样的设计模式。设计原则是设计要求,设计模式是设计方案,使用设计模式的代码则是具体的实现。 设计模式中主要有六大设计原则,简称为SOL…

【云原生】持续集成持续部署

本文主要总结CI/CD的流程&#xff0c;不会详细介绍每个知识点。 啥是集成&#xff1f;啥是部署&#xff1f; 集成&#xff0c;就是把应用程序、相关环境、配置全局打包放在一个容器中的操作。部署就不解释了。 CI/CD 如果是自己手动部署的话&#xff0c;流程应该是这样的&am…

Global Gamers Challenge | 与 Flutter 一起保护地球

作者 / Kelvin Boateng 我们知道 Flutter 开发者热爱挑战&#xff0c;因此我们很高兴地宣布&#xff0c;新一轮的 Flutter 挑战赛来了&#xff01; 挑战https://flutter.cn/events/puzzle-hack Global Gamers Challenge 是一项为期 8 周的比赛&#xff0c;参赛者需要设计、构建…

零到大师:嵌入式Linux学习书单分享

大家好&#xff0c;我是知微&#xff01; 上一篇推荐的书单嵌入式软件必读10本书_单片机篇&#xff0c;收到反响很好。再推荐一篇嵌入式Linux相关的书单。 《鸟哥的Linux私房菜》 鸟哥的Linux系列适合零基础小伙伴&#xff0c;从电脑基础到文件系统、shell脚本等等&#xff…

基于机器学习的青藏高原高寒沼泽湿地蒸散发插补研究_王秀英_2022

基于机器学习的青藏高原高寒沼泽湿地蒸散发插补研究_王秀英_2022 摘要关键词 1 材料和方法1.1 研究区概况与数据来源1.2 研究方法 2 结果和分析2.1 蒸散发通量观测数据缺省状况2.2 蒸散发与气象因子的相关性分析2.3 不同气象因子输入组合下各模型算法精度对比2.4 随机森林回归模…

Netty-核心组件

核心组件 1.Bootstrap和ServerBootstrap2.Future和ChannelFuture3.Channel4.Selector5.NioEventLoop6.NioEventLoopGroup7.ByteBuf8.ChannelHandler9.ChannelHandlerContext10.ChannelPipeline 1.Bootstrap和ServerBootstrap Bootstrap是Netty的启动程序&#xff0c;⼀个Netty…

Modern C++ std::variant的实现原理

前言 std::variant是C17标准库引入的一种类型&#xff0c;用于安全地存储和访问多种类型中的一种。它类似于C语言中的联合体&#xff08;union&#xff09;&#xff0c;但功能更为强大。与联合体相比&#xff0c;std::variant具有类型安全性&#xff0c;可以判断当前存储的实际…

SQL注入:堆叠注入-强网杯[随便注]

目录 什么是堆叠注入&#xff1f; 强网杯-随便注 rename && alter绕过 prepare绕过 Handle绕过 靶机&#xff1a;BUUCTF在线评测 什么是堆叠注入&#xff1f; 在一些场景中&#xff0c;应用程序支持一次执行多条SQL语句&#xff0c;我们称为堆叠查询&#xff0c;…

MyBatis-Plus:通用分页实体封装

分页查询实体&#xff1a;PageQuery package com.example.demo.demos.model.query;import com.baomidou.mybatisplus.core.metadata.OrderItem; import com.baomidou.mybatisplus.extension.plugins.pagination.Page; import lombok.Data; import org.springframework.util.St…

MYSQL数据库详解

一、数据库的基本概念 数据&#xff08;data&#xff09;&#xff1a;指对客观事物进行描述并可以鉴别的符号。这些符号是可识别的&#xff0c;抽象的。 比如数字、图片、音频等。 数据库管理系统&#xff08;DBMS&#xff09;&#xff1a;数据库极其管理它的软件组成。 数据库…

机器人内部传感器阅读笔记及心得-位置传感器-电位器式位置传感器

位置传感器 位置感觉是机器人最基本的感觉要求&#xff0c;可以通过多种传感器来实现。位置传感器包括位置和角度检测传感器。常用的机器人位置传感器有电位器式、光电式、电感式、电容式、霍尔元件式、磁栅式及机械式位置传感器等。机器人各关节和连杆的运动定位精度要求、重…