基于机器学习的青藏高原高寒沼泽湿地蒸散发插补研究_王秀英_2022

基于机器学习的青藏高原高寒沼泽湿地蒸散发插补研究_王秀英_2022

  • 摘要
    • 关键词
  • 1 材料和方法
    • 1.1 研究区概况与数据来源
    • 1.2 研究方法
  • 2 结果和分析
    • 2.1 蒸散发通量观测数据缺省状况
    • 2.2 蒸散发与气象因子的相关性分析
    • 2.3 不同气象因子输入组合下各模型算法精度对比
    • 2.4 随机森林回归模型插补结果分析
  • 3 讨论
  • 4 结论

在这里插入图片描述

摘要

  本文以青藏高原典型高寒沼泽湿地为观测研究站, 以实际蒸散发为研究对象, 结合气象因子(净辐射、气温、土壤热通量、风速、相对湿度、土壤含水率), 建立基于多元线性回归(MLR)、决策树(CART)、随机森林(RF)、支持向量回归(SVR)、多层感知机(MLP) 7种组合5类算法的预测模型, 找出对于蒸散发具有较高精度的插补方法, 实现实际蒸散发数据集的构建。

关键词

机器学习; 高寒沼泽湿地; 蒸散发; 交叉验证

1 材料和方法

1.1 研究区概况与数据来源

  试验地位于中国气象局青海高寒生态气象野外科学试验基地隆宝试验站(简称隆宝站) (图1)。
在这里插入图片描述
  本研究选取隆宝站2019年1–10月涡度相关系统所观测的原始数据(其他观测时段缺测)。本研究采用站点30 min的有效气象因子和蒸散发观测值研究机器学习算法的插补效果。将每月30 min气象因子净辐射(W·m–2)、气温(℃)、相对湿度(%)、土壤热通量(W·m–2)、风速(m·s–1)、土壤含水率(%)作为输入变量, 相应月份的30 min蒸散发观测值作为输出变量, 并将每月观测值的70%作为训练集, 30%作为测试集, 按月单独进行训练, 采用机器学习回归算法插补缺失或丢弃的数据以获得完整通量时间序列。

1.2 研究方法

1.2.1 多元线性回归算法
1.2.2 决策回归树算法
1.2.3 随机森林算法
1.2.4 支持向量回归算法
1.2.5 多层感知机算法

2 结果和分析

2.1 蒸散发通量观测数据缺省状况

  本研究地点是以高寒沼泽湿地为下垫面的隆宝试验站, 其2019年1–10月(11、12月缺测)蒸散发通量观测数据缺失状况如表1所示, 2019年数据平均缺失率为17%。
在这里插入图片描述

2.2 蒸散发与气象因子的相关性分析

  结果如表2所示, 研究区蒸散发与所选气象因子存在显著相关关系, 相关性大小关系为: 净辐射>土壤热通量>相对湿度>气温>风速>土壤温度>土壤含水率。
在这里插入图片描述

2.3 不同气象因子输入组合下各模型算法精度对比

  根据表2气象因子与蒸散发相关性分析, 选取平均相关系数从大到小的气象因子为特征组合, 基于7个特征组合方案, 分别建立7个基于机器学习算法模型, 输入的气象因子模型特征组合及模型精度如表3、4所示。
在这里插入图片描述
在这里插入图片描述
  不同气象因子对蒸散发的重要性不同, 利用算法模型中重要性估计方法, 可以得出主要影响蒸散发的气象因子, 图2给出了5个气象因子重要性排序(土壤温度和土壤含水率重要性几乎为0, 图中未作显示), 相对重要性从大到小依次为: 土壤热通量、净辐射、气温、风速、相对湿度
在这里插入图片描述

2.4 随机森林回归模型插补结果分析

2.4.1 模型参数调优
  选用随机森林算法, 利用组合1进行蒸散值的插补, 为了提高随机森林回归模型插补精度 , 用交叉验证法(GridSearchCV), 寻找最优超参数。当参数max_features为0.9, max_depth为6时, 误差error_score达到最低(0.3左右), 此时, GridSearchCV返回的最优分数为0.90 (图3)。
在这里插入图片描述
2.4.2 插补结果分析
  利用已训练好的插补模型对隆宝站2019年缺失蒸散发进行插补, 结果见表5所示。
在这里插入图片描述

  图4为插补精度最高(10月)和最低(6月)两个月的插补效果。图5为随机森林插补精度最高(10月)和最低(6月)的插补精度验证图。
在这里插入图片描述

在这里插入图片描述
  图6可以看出, 净辐射、土壤热通量、气温与蒸散发日尺度变化趋势基本一致, 呈正相关关系; 风速、相对湿度与蒸散发变化趋势相反, 呈负相关关系。
在这里插入图片描述

3 讨论

4 结论

  (1)研究区蒸散发与所选气象因子存在显著相关关系, 相关性大小关系为: 净辐射>土壤热通量>
相对湿度>气温>风速>土壤温度>土壤含水率。
  (2)依据随机森林模型中重要性估计方法, 高寒沼泽湿地影响蒸散发的气象因子相对重要性由大到小依次为: 土壤热通量、净辐射、气温、风速、相对湿度。
  (3) 7种组合的5类机器学习算法模型的R2变化范围为0.58–0.83, RMSE变化范围为0.038–0.089 mm·30 min–1。5种算法模型的R2最大为随机森林算法, 最小为多层感知机算法。随机森林算法在不同气象因子组合下的插补表现最优, 在5个算法模型中拟合精度始终保持在最高值, RMSE在最低值, 精度和稳定性最佳。针对7种不同气象因子组合, 组合1 的随机森林效果最优。利用交叉验证法(GridSearchCV)搜索最优超参数, 返回的最优参数max_features为0.9, max_depth为6, 最优分数达到0.90。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/694939.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Netty-核心组件

核心组件 1.Bootstrap和ServerBootstrap2.Future和ChannelFuture3.Channel4.Selector5.NioEventLoop6.NioEventLoopGroup7.ByteBuf8.ChannelHandler9.ChannelHandlerContext10.ChannelPipeline 1.Bootstrap和ServerBootstrap Bootstrap是Netty的启动程序,⼀个Netty…

Modern C++ std::variant的实现原理

前言 std::variant是C17标准库引入的一种类型,用于安全地存储和访问多种类型中的一种。它类似于C语言中的联合体(union),但功能更为强大。与联合体相比,std::variant具有类型安全性,可以判断当前存储的实际…

SQL注入:堆叠注入-强网杯[随便注]

目录 什么是堆叠注入? 强网杯-随便注 rename && alter绕过 prepare绕过 Handle绕过 靶机:BUUCTF在线评测 什么是堆叠注入? 在一些场景中,应用程序支持一次执行多条SQL语句,我们称为堆叠查询,…

MyBatis-Plus:通用分页实体封装

分页查询实体:PageQuery package com.example.demo.demos.model.query;import com.baomidou.mybatisplus.core.metadata.OrderItem; import com.baomidou.mybatisplus.extension.plugins.pagination.Page; import lombok.Data; import org.springframework.util.St…

MYSQL数据库详解

一、数据库的基本概念 数据(data):指对客观事物进行描述并可以鉴别的符号。这些符号是可识别的,抽象的。 比如数字、图片、音频等。 数据库管理系统(DBMS):数据库极其管理它的软件组成。 数据库…

机器人内部传感器阅读笔记及心得-位置传感器-电位器式位置传感器

位置传感器 位置感觉是机器人最基本的感觉要求,可以通过多种传感器来实现。位置传感器包括位置和角度检测传感器。常用的机器人位置传感器有电位器式、光电式、电感式、电容式、霍尔元件式、磁栅式及机械式位置传感器等。机器人各关节和连杆的运动定位精度要求、重…

qt-OPENGL-星系仿真

qt-OPENGL-星系仿真 一、演示效果二、核心程序三、下载链接 一、演示效果 二、核心程序 #include "model.h"Model::Model(QOpenGLWidget *_glWidget) { glWidget _glWidget;glWidget->makeCurrent();initializeOpenGLFunctions(); }Model::~Model() {destroyV…

【Pytorch深度学习开发实践学习】B站刘二大人课程笔记整理lecture04反向传播

lecture04反向传播 课程网址 Pytorch深度学习实践 部分课件内容: import torchx_data [1.0,2.0,3.0] y_data [2.0,4.0,6.0] w torch.tensor([1.0]) w.requires_grad Truedef forward(x):return x*wdef loss(x,y):y_pred forward(x)return (y_pred-y)**2…

浅谈WPF之利用RichTextBox实现富文本编辑器

在实际应用中,富文本随处可见,如留言板,聊天软件,文档编辑,特定格式内容等,在WPF开发中,如何实现富文本编辑呢?本文以一个简单的小例子,简述如何通过RichTextBox实现富文…

Zabbix 6.2.1 安装

目录 1、监控介绍 监控的重要性 网站的可用性 监控范畴 如何监控 2、Zabbix 介绍 zabbix 简介 zabbix 主要功能 zabbix 监控范畴 Zabbix 监控组件 zabbix 常见进程 zabbix agentd 工作模式 zabbix 环境监控中概念 3、搭建LNMP 拓扑规划 安装MySQL 安装 Nginx …

【智能家居】7、主程序编写+实现语音、网络和串口功能

需要毕业论文私信有偿获取 截止目前mainPro.c代码 #include <stdio.h> #include <string.h>#include "controlDevices.h" #include "inputCmd.h"struct Devices *findDevicesName(char *name,struct Devices *phead){struct Devices *tmp=ph…

2012及其以上系统修改服务器密码指南

修改服务器密码指南,目前介绍两种不同的方案 方法一 指令式 winR键 弹出运行框里输入 cmd 点击确认或者右下角开始程序里面的点开运行 2.在弹出框里手动输入以下一组文字&#xff1a;net user administrator 123456 框内无法粘贴 需要手动输入 其中administrator 是用…

贝叶斯统计——入门级笔记

绪论 1.1 引言 全概率公式 贝叶斯公式 三种信息 总体信息 当把样本视为随机变量时&#xff0c;它有概率分布&#xff0c;称为总体分布&#xff0e; 如果我们已经知道总体的分布形式这就给了我们一种信息&#xff0c;称为总体信息 样本信息 从总体中抽取的样本所提供的信息 先…

【PX4学习笔记】13.飞行安全与炸机处理

目录 文章目录 目录使用QGC地面站的安全设置、安全绳安全参数在具体参数中的体现安全绳 无人机炸机处理A&#xff1a;无人机异常时控操作B&#xff1a;无人机炸机现场处理C&#xff1a;无人机炸机后期维护和数据处理D&#xff1a;无人机再次正常飞行测试 无人机飞行法律宣传 使…

22. 【Linux教程】Linux 结束进程

前面小节介绍了如何启动一个程序进程&#xff0c;还介绍了如何查看系统进程信息&#xff0c;本小节来介绍如何通过 kill 命令结束进程。 1. Linux 进程信号介绍 下面列举出 Linux 进程信号的描述&#xff1a; 信号名称描述1HUP挂起2INT中断3QUIT结束运行9KILL无条件终止11SEG…

STM32CubeIDE开发(二), 全面解析cubeMX图形配置工具

STM32CubeIDE开发(二&#xff09;&#xff0c; 全面解析cubeMX图形配置工具 已于 2023-03-15 10:31:13 修改1374 收藏 29 分类专栏&#xff1a; ​编辑STM32CubeIDE开发实践案例专栏收录该内容 36 篇文章43 订阅 订阅专栏 目录 一、cubeIDE 集成cubeMX 二、STM32CubeMX…

Python format函数

在Python编程中&#xff0c;format()函数是一个非常重要且常用的字符串格式化方法&#xff0c;用于将各种数据类型插入到字符串中&#xff0c;并指定其格式。这个函数可以动态地生成各种格式的字符串&#xff0c;包括文本、数字、日期等。本文将深入探讨Python中的format()函数…

【Vuforia+Unity】AR04-地面、桌面平面识别功能

不论你是否曾有过相关经验&#xff0c;只要跟随本文的步骤&#xff0c;你就可以成功地创建你自己的AR应用。 官方教程Ground Plane in Unity | Vuforia Library 这个功能很棒&#xff0c;但是要求也很不友好&#xff0c;只能支持部分移动设备&#xff0c;具体清单如下&#xf…

Socket通信---Python发送数据给C++程序

0. Problems 很多时候实现某种功能&#xff0c;需要在不同进程间发送数据&#xff0c;目前有几种主流的方法&#xff0c;如 让python和C/C程序互相发送数据&#xff0c;其实有几种方法&#xff1a; 共享内存共享文件Socket通信 在这里只提供Socket通信的例程&#xff0c;共享…

挑战30天学完Python:Day16 日期时间

&#x1f4d8; Day 16 &#x1f389; 本系列为Python基础学习&#xff0c;原稿来源于 30-Days-Of-Python 英文项目&#xff0c;大奇主要是对其本地化翻译、逐条验证和补充&#xff0c;想通过30天完成正儿八经的系统化实践。此系列适合零基础同学&#xff0c;或仅了解Python一点…