【Python Scrapy】分布式爬虫利器

在当今信息爆炸的时代,获取大规模数据对于许多应用至关重要。而分布式爬虫作为一种强大的工具,在处理大量数据采集和高效爬取方面展现了卓越的能力。

本文将深入探讨分布式爬虫的实际应用场景,通过代码示例演示其在提升爬取效率、保障系统稳定性、实现数据一致性等方面的优越表现。无论是加速爬取速度、实现跨地域爬取还是处理高并发请求,分布式爬虫都为解决这些挑战提供了创新性的解决方案。随着对大数据的需求不断增长,深入了解和灵活运用分布式爬虫将成为爬虫领域的关键技能。
在这里插入图片描述

Scrapy框架的基本使用

创建爬虫项目

首先,使用Scrapy提供的命令行工具创建一个新的爬虫项目。

scrapy startproject myproject

这将创建一个名为myproject的文件夹,其中包含了一个基本的Scrapy项目结构。

定义爬虫规则

Scrapy中,通过创建一个Spider类来定义爬虫规则。以下是一个简单的示例:

# myproject/spiders/myspider.py
import scrapyclass MySpider(scrapy.Spider):name = 'my_spider'def start_requests(self):# 定义初始请求yield scrapy.Request(url='http://example.com', callback=self.parse)def parse(self, response):# 解析页面内容title = response.css('title::text').extract_first()self.log(f'Title: {title}')

在这个例子中,定义了一个名为my_spiderSpider类,通过start_requests方法定义了初始请求,然后通过parse方法解析页面内容。

分布式爬虫原理

了解了Scrapy框架的基本使用后,现在探讨分布式爬虫的原理。分布式爬虫的核心思想是将爬取任务分发到多个节点上,以提高整体的爬取效率。

分布式任务队列

一个关键的组成部分是任务队列,使用Redis作为分布式任务队列的中心。
以下是一个简单的示例:

# 使用Redis和RQ库进行任务队列
import redis
from rq import Queue# 连接到Redis
redis_conn = redis.Redis()
queue = Queue(connection=redis_conn)# 将任务加入队列
job = queue.enqueue(scrape_task, url)

在这里,将爬取任务scrape_task和对应的URL加入到Redis队列中,以待分布式节点执行。

数据去重

在分布式爬虫中,数据去重是一个关键的问题。由于任务分发到不同节点,每个节点都有可能独立地爬取相同的页面,因此需要一种机制来确保不会重复爬取相同的数据。Scrapy-Redis通过提供内置的去重机制来解决这个问题。

1、去重原理

Scrapy-Redis的去重机制基于RedisSet数据结构实现。具体而言,每个请求的URL都会被添加到一个Redis Set中,当下一个请求到达时,系统会检查该URL是否已经存在于Set中,如果存在则视为重复,将被丢弃。

2、配置去重机制

Scrapy项目的settings.py中,可以配置Scrapy-Redis去重机制的相关参数。以下是一些常见的配置选项:

# settings.py# 使用Scrapy-Redis的去重中间件
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"# 使用Redis调度器
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
SCHEDULER_PERSIST = True# Redis连接信息
REDIS_URL = 'redis://localhost:6379/0'

通过配置上述选项,Scrapy将使用Scrapy-Redis提供的去重中间件和调度器,确保任务在分布式环境中不会重复执行。

3、注意事项

● 任务标识符: Scrapy-Redis默认使用请求的URL作为任务的唯一标识符,因此确保URL能够唯一标识一个任务是非常重要的。
● 更灵活的去重: Scrapy-Redis的去重机制是可定制的,如果需要更灵活的去重方式,可以自定义去重中间件。

# settings.py# 自定义去重中间件
DUPEFILTER_CLASS = "myproject.custom_dupefilter.CustomDupeFilter"

通过了解Scrapy-Redis的去重机制,可以更好地理解分布式爬虫中如何处理数据去重的问题,并通过合适的配置保障系统的稳定性和效率。

Scrapy-Redis的使用

Scrapy-Redis作为Scrapy的强大扩展,为在分布式环境中管理爬虫提供了便利。通过Scrapy-Redis,能够更灵活地处理分布式爬虫的任务调度、去重、状态监控等方面的问题。以下是Scrapy-Redis的一些关键特性和使用方法:

1、配置Scrapy-Redis

在使用Scrapy-Redis之前,需要在Scrapy项目的settings.py中进行相应的配置。
以下是一些基本配置:

# settings.py# 使用Scrapy-Redis的调度器
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
SCHEDULER_PERSIST = True# 使用Scrapy-Redis的去重中间件
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"# 设置Redis连接信息
REDIS_URL = 'redis://localhost:6379/0'

通过上述配置,Scrapy将使用Scrapy-Redis提供的调度器和去重中间件,实现任务的分发和数据去重。

2、创建RedisSpider

Scrapy-Redis通过提供RedisSpider类,简化了在分布式环境中创建爬虫的过程。继承RedisSpider并设置一些基本属性,即可创建一个适用于分布式爬虫的Spider

# myproject/spiders/my_redis_spider.py
from scrapy_redis.spiders import RedisSpiderclass MyRedisSpider(RedisSpider):name = 'my_redis_spider'# 定义爬虫规则def parse(self, response):# 解析页面内容pass
3、运行爬虫

在运行爬虫时,使用Scrapy命令行工具,并指定Spider的名称即可。Scrapy-Redis会自动连接到配置的Redis服务器,进行任务的调度和去重。

scrapy crawl my_redis_spider
4、调整爬虫并发

在分布式爬虫中,通过调整并发请求数量,可以控制每个节点的爬取速度。在Scrapy命令行中使用-s参数进行设置。

# 设置并发请求数量
scrapy crawl my_redis_spider -s CONCURRENT_REQUESTS_PER_DOMAIN=10
5、分布式存储

Scrapy-Redis并不限制数据存储的方式,可以使用任何适合的数据库或对象存储。在实际项目中,根据需求选择合适的存储方式,以满足分布式爬虫的数据处理需求。

通过Scrapy-Redis的简单配置和使用,开发者可以更轻松地构建和管理分布式爬虫系统,提高爬取效率和系统稳定性。

分布式爬虫的优势

分布式爬虫相比于传统单机爬虫在多个方面具有明显优势,这些优势使其成为处理大规模数据采集和高效爬取的理想选择。以下是分布式爬虫的一些显著优势:

1、爬取效率提升

通过将爬取任务分发到多个节点,分布式爬虫能够同时处理多个页面,从而显著提升了爬取效率。这对于需要大规模爬取数据的项目而言尤为重要。

# 单机爬虫
scrapy crawl my_spider# 分布式爬虫
scrapy crawl my_redis_spider
2、系统稳定性

分布式爬虫在面对异常和错误时更具稳定性。如果一个节点发生故障,其他节点仍可继续执行任务,不会导致整个爬虫系统的崩溃。

3、资源利用

分布式爬虫能够更充分地利用系统资源,因为任务可以并行执行在多个节点上。这意味着更高的CPU利用率和更短的爬取时间。

4、高并发处理

由于任务分布到多个节点,分布式爬虫能够轻松应对高并发情况,确保在短时间内处理大量请求,适用于应对瞬时爬取需求的场景。

5、灵活扩展性

分布式爬虫具有良好的扩展性,可以根据需求动态增加爬虫节点,灵活应对任务量的变化。这种灵活性在面对数据规模的不断增长时尤为重要。

6、数据一致性

通过合理设计分布式爬虫的数据处理流程,可以保障数据的一致性。多节点并行处理时,需要考虑数据同步和一致性的问题,避免因节点间数据不一致而导致错误。

实际应用场景

1、爬取速度提升

通过调整爬虫的并发请求数量,可以实现爬取速度的提升。

# 爬取速度提升
scrapy crawl my_redis_spider -s CONCURRENT_REQUESTS_PER_DOMAIN=10
2、分布式存储

在分布式爬虫中,可以使用分布式数据库进行数据存储,例如MongoDB

# pipelines.py
import pymongoclass DistributedStoragePipeline:def __init__(self, mongo_uri, mongo_db):self.mongo_uri = mongo_uriself.mongo_db = mongo_db@classmethoddef from_crawler(cls, crawler):return cls(mongo_uri=crawler.settings.get('MONGO_URI'),mongo_db=crawler.settings.get('MONGO_DATABASE', 'items'))def open_spider(self, spider):self.client = pymongo.MongoClient(self.mongo_uri)self.db = self.client[self.mongo_db]def close_spider(self, spider):self.client.close()def process_item(self, item, spider):self.db[spider.name].insert_one(dict(item))return item
```#### 3、定时任务和调度
通过配置`Scrapy`的定时任务,可以定期执行爬取任务。```py
# 定时任务配置
0 0 * * * scrapy crawl my_redis_spider
```#### 4、跨地域爬取
在分布式爬虫中,可以部署节点到不同地域,实现跨地域爬取。```py
# 部署节点到不同地域
scrapy crawl my_redis_spider -a region=us
scrapy crawl my_redis_spider -a region=eu
```#### 5、高并发处理
通过分布式爬虫的弹性,能够轻松应对高并发请求。
```py
# 高并发处理
scrapy crawl my_redis_spider -s CONCURRENT_REQUESTS=100
```
#### 6、数据一致性
设计分布式爬虫的数据同步机制,保障数据的一致性。
```py
# 数据同步机制
def sync_data():# 实现数据同步逻辑pass
```##总结
分布式爬虫在实际应用中展现了显著的优势和灵活性。通过提升爬取效率、保障系统稳定性、充分利用资源、处理高并发请求等方面,分布式爬虫在大规模数据采集和高效爬取方面表现出色。通过灵活的配置和设计,分布式爬虫能够适应不同的应用场景,并为解决复杂的爬取任务提供了可行的解决方案。在实际应用中,通过调整爬虫的并发数、使用分布式存储、定时任务调度、跨地域爬取、处理高并发请求等策略,能够充分发挥分布式爬虫的优势。同时,合理设计数据同步机制,保障数据一致性,使得系统更加健壮可靠。分布式爬虫不仅能够应对大规模数据爬取的挑战,还为爬虫系统的扩展和优化提供了便利。通过深入理解和灵活应用分布式爬虫的特性,开发者能够更好地应对不同项目的需求,构建高效、稳定的爬虫系统。综上所述,分布式爬虫在爬虫领域具有广泛的应用前景,对于处理复杂的爬取任务和应用场景具有重要价值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/693823.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

牛刀小试 - C++ 学生信息管理系统

参考文档: C实现:学生管理系统(详细解析) 关于switch中的default里面的break是否可以省略这件事 需求要求: (1)增加记录 (2)查找记录 (3)删除…

FFmpeg进阶-给视频添加马赛克效果

很多时候为了隐藏视频中的敏感信息如人脸、身份证号、车牌号等,我们会采用马赛克算法对视频帧中的一部分内容进行处理。这里介绍一下如何采用FFmpeg实现马赛克效果。 马赛克效果算法的原理如下: 1.分块处理:首先将图像划分为多个小块或区域 2.像素替换:对于每个小块,算法会将…

【Windows11】内存使用率只有总内存容量的一半

硬件配置:2根16G的内存条(金百达DDR4 3600, 海力士颗粒,灯条刃),插在2和4通道上 系统配置:windows11 问题描述,我和这位网友的问题一模一样: 系统32G内存,开机完全识别&…

实习日志17

1.测试公司服务器 1.1.太卡了,点一下卡半天 上传项目源码和文件: 将活字格项目源码和所有相关文件上传到服务器的指定目录。可以使用向日葵远程控制或者版本控制系统来进行文件上传。 重新配置活字格项目: 根据服务器环境,需要对…

Java 学习和实践笔记(14):用表格来理解类、对象、属性以及动作(方法)很容易

OOP :面向对象编程,object oriented programming. 用表格就可以很好地理解类、对象、属性、以及动作这些概念。 一个表(结构)就对应一个类(结构)。所以凡叫什么类,自己就在心里把它叫什么表。反过来&…

vue 非父子通信-event bus 事件总线

1.作用 非父子组件之间,进行简易消息传递。(复杂场景→ Vuex) 2.步骤 创建一个都能访问的事件总线 (空Vue实例) import Vue from vue const Bus new Vue() export default Bus A组件(接受方),监听Bus的…

【图与网络数学模型】3.Ford-Fulkerson算法求解网络最大流问题

【图与网络数学模型】3.Ford-Fulkerson算法求解网络最大流问题 一、网络流模型1. 概述2. 可行流3. 增广链 二、示例1. 最大流问题2. Alternate Formulation:最小截量问题 三、Ford-Fulkerson 算法1. 导入库2. 初始化残差图3. 定义查找增广路径4. 定义循环5. 程序运行…

ubuntu22.04@Jetson Orin Nano之OpenCV安装

ubuntu22.04Jetson Orin Nano之OpenCV安装 1. 源由2. 分析3. 证实3.1 jtop安装3.2 jtop指令3.3 GPU支持情况 4. 安装OpenCV4.1 修改内容4.2 Python2环境【不需要】4.3 ubuntu22.04环境4.4 国内/本地环境问题4.5 cudnn版本问题 5. 总结6. 参考资料 1. 源由 昨天用Jetson跑demo程…

《英伟达-本地AI》--NVIDIA Chat with RTX-本机部署

阿丹: 突然发现公司给配置的电脑是NVIDIA RTX 4060的显卡,这不搞一搞本地部署的大模型玩一玩??? 从0-》1记录一下本地部署的全过程。 本地模型下载地址: Build a Custom LLM with Chat With RTX | NVIDIA…

虚拟机安装Centos7迷你版

虚拟机安装Centos7迷你版 迷你版较常规版精简了很多功能,所以体积也小了很多,喜欢自定义安装的可以选择迷你版 参考文章: VirtualBox虚拟机安装Centos7详细教程图解 网卡配置参考文章 下载Centos迷你版镜像 安装镜像 下载镜像 阿里云Cen…

理论学习-ARM-内核

ARM内核 函数的调用加载、存储计算中断异常线程的切换 为了提高学习效率,我们要提前想好学习策略。 首先,使用频率越高的知识点,越要首先学习。假使,我们学习了一个知识点,能覆盖工作中80%的工作量,那是不是…

机器学习基础(四)非监督学习的进阶探索

导语:上一节我们详细探索监督学习的进阶应用,详情可见: 机器学习基础(三)监督学习的进阶探索-CSDN博客文章浏览阅读296次,点赞13次,收藏11次。监督学习作为机器学习的一个主要分支,…

【C++】vector模拟实现+迭代器失效

vector模拟实现 成员变量定义默认成员函数构造函数 迭代器范围for、对象类型匹配原则 容量操作sizeemptycapacityreserve成员变量未更新memcpy值拷贝 resize内置类型的构造函数 数据访问frontbackoperator[ ] 数据修改操作push_backpop_backswapclearinsertpos位置未更新无返回…

【Linux】Linux调试器-gdb使用

1. 背景 程序的发布方式有两种,debug模式和release模式 Linux gcc/g出来的二进制程序,默认是release模式 要使用gdb调试,必须在源代码生成二进制程序的时候, 加上 -g 选项 2. 开始使用 gdb binFile 退出: ctrl d 或 quit 调…

Java 学习和实践笔记(15):面向过程和面象对象其实很简单!

学完这一节,才真正明白了什么叫面向对象和面向过程,其实很简单~ 第一个例子:怎样把大象装进冰箱 这个很清楚很容易地可以列出第一步。 第二个例子:怎样制造一台汽车 这个就很难确定哪一步做第一步。 面向过程和面向对象的区别 …

笔记:torch.roll

最近在准备写 swin transformer 的文章,记录下 torch.roll 的用法: >>> x torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]).view(4, 2) >>> x tensor([[1, 2],[3, 4],[5, 6],[7, 8]]) 第0维度向下移1位,多出的[7,8]补充到顶部 &g…

【移动开发】iOS平台 Java编译器 Jedona Compiler 评测

上期编译器评测链接: Java Compiler IDE评测 一、使用平台 该编译器(Jedona Compiler)在苹果应用市场App Store中下载,笔者使用iPad进行Java代码编写。 应用市场界面: 二、开发界面介绍 开发界面比较简洁&#xf…

python 与 neo4j 交互(py2neo 使用)

参考自:neo4j的python.py2neo操作入门 官方文档:The Py2neo Handbook — py2neo 2021.1 安装:pip install py2neo -i https://pypi.tuna.tsinghua.edu.cn/simple 1 节点 / 关系 / 属性 / 路径 节点(Node)和关系(relationship)是构成图的基础…

重磅!移远通信正式发布一站式XR产品解决方案,助力探索数字世界新纪元

伴随着以5G、大数据、云计算等现代化信息科技的发展,人类对数字世界、智慧地球的探索更加深入。尤其是以XR(扩展现实)为代表的技术崛起,更让物理世界与虚拟世界中的连接愈发紧密,千行百业也亟待新探索。 近日&#xff…

计算机组成原理(4)-----Cache的原理及相关知识点

目录 1.Cache的原理 2.Cache的性能 3.Cache和主存的映射方式 (1)全相联映射 (2)直接映射 (3)组相联映射 4.替换算法 (1)随机算法(RAND) (2)先进先出算法(FIFO) (3)近期最少使用(LRU) (4)最近不经…