python 与 neo4j 交互(py2neo 使用)

参考自:neo4j的python.py2neo操作入门
官方文档:The Py2neo Handbook — py2neo 2021.1
安装:pip install py2neo -i https://pypi.tuna.tsinghua.edu.cn/simple

1 节点 / 关系 / 属性 / 路径

节点(Node)和关系(relationship)是构成图的基础,节点和关系都可以有多个属性(property),并且均可以作为实体

重点:

  1. 节点:在图数据库中,节点代表实体,可以拥有属性和标签。节点通常用来表示实际的数据实体,比如人、地点、事件等
  2. 关系:关系描述了节点之间的连接或关联,必须包含两个节点,且具有方向:start node →end node
  3. 路径:路径是由节点和关系组成的序列,描述了节点之间的连接路径。路径是一个完整的图形结构,由起始节点、关系和结束节点组成,表示了实体之间的关系和连接方式
  4. 属性:键-值(key-value),键是字符串类型,值,可以是原数据,也可以由原数据同类型的数组
  5. 对于一个节点来说,与之相连的关系是有输入和输出两个方向。(如node2有输入关系和输出关系:node1→node2→node3),这个特性对于遍历图很重要
  6. 一个节点可以有一个关系是指向自己的

2 连接neo4j

前置安装可以看:

#cmd窗口下
neo4j.bat console
浏览器访问 http://localhost:7474/

3 创建图对象

from py2neo import Graph, Subgraph
from py2neo import Node, Relationship, Path# 连接数据库
# graph = Graph('http://localhost:7474', username='neo4j', password='123456') # 旧版本
graph = Graph('bolt://localhost:7687', auth=('neo4j', '123456'))# 删除所有已有节点
graph.delete_all()

4 数据类型及操作

4.1 Node:节点

基本语法:Node(*labels,**properties)

# 定义node
node_1 = Node('英雄',name = '张无忌')
node_2 = Node('英雄',name = '杨逍',武力值='100')
node_3 = Node('派别',name = '明教')# 存入图数据库
graph.create(node_1)
graph.create(node_2)
graph.create(node_3)
print(node_1)

在这里插入图片描述

4.2 Relationship:关系

基本语法:Relationship((start_node, type, end_node, **properties))

# 增加关系
node_1_to_node_2 = Relationship(node_2,'教主',node_1)
node_3_to_node_1 = Relationship(node_1,'统领',node_3)
node_2_to_node_2 = Relationship(node_2,'师出',node_3)graph.create(node_1_to_node_2)
graph.create(node_3_to_node_1)
graph.create(node_2_to_node_2)

在这里插入图片描述

4.3 Path:路径

基本语法:Path(*entities)
注:entities是实体

# 建一个路径:比如按照该路径查询,或者遍历的结果保存为路径
node_4,node_5,node_6 = Node(name='阿大'),Node(name='阿三'),Node(name='阿二')
path_1 = Path(node_4,'小弟',node_5,Relationship(node_6, "小弟", node_5),node_6) # (阿大)-[:小弟 {}]->(阿三)<-[:小弟 {}]-(阿二)
graph.create(path_1)print(path_1)

在这里插入图片描述

4.4 Subgraph:子图

节点和关系的任意集合,它也是 Node、Relationship 和 Path 的基类
基本语法:Subgraph(nodes, relationships)
空子图表示为None,使用bool()可以测试是否为空,且参数要按数组输入

# 创建一个子图,并通过子图的方式更新数据库
node_7 = Node('英雄',name = '张翠山')
node_8 = Node('英雄',name = '殷素素')
node_9 = Node('英雄',name = '狮王')relationship7 = Relationship(node_1,'生父',node_7)
relationship8 = Relationship(node_1,'生母',node_8)
relationship9 = Relationship(node_1,'义父',node_9)
subgraph_1 = Subgraph(nodes = [node_7,node_8,node_9],relationships = [relationship7,relationship8,relationship9])
graph.create(subgraph_1)

在这里插入图片描述

4.5 工作流

(1)GraphService:基于图服务的工作流。
(2)Graph:基于图数据库的工作流(前文所述的基本上都是如此)。
(3)Transaction:基于事务的工作流
在一个事务里,进行多种操作,只有操作全部完成,工作流才算完成,如:
一个Transaction分两个任务:① 增加一个新节点 ② 将该节点与已有节点创建新关系
两个任务只要有一个没完成,整个工作流就不会生效
通常,该种方式通过Graph.begain(readonly=False)构造函数构造,参数readonly表示只读,无参数默认可写

# 创建一个新的事务
transaction_1 = graph.begin()# 创建一个新node
node_10 = Node('武当',name = '张三丰')
transaction_1.create(node_10)
# 创建两个关系:张无忌→(师公)→张三丰   张翠山→(妻子)→殷素素
relationship_10 = Relationship(node_1,'师公',node_10)
relationship_11 = Relationship(node_7,'妻子',node_8)transaction_1.create(relationship_10)
transaction_1.create(relationship_11)transaction_1.commit()

在这里插入图片描述

4.6 删

# 删除所有:谨慎使用
# graph.delete_all()# 按照节点id删除:要删除某个节点之前,需要先删除关系。否则会报错:ClientError
graph.run('match (r) where id(r) = 3 delete r')
# 按照name属性删除:先增加一个单独的节点:
node_x = Node('英雄',name ='韦一笑')
graph.create(node_x)
graph.run('match (n:英雄{name:\'韦一笑\'}) delete n')# 删除一个节点及与之相连的关系
graph.run('match (n:英雄{name:\'韦一笑\'}) detach delete n')
# 删除某一类型的关系
graph.run('match ()-[r:喜欢]->() delete r;')# 删除子图
# delete(self, subgraph)

4.7 改

# 将node_9狮王的武力值改为100
node_9['武力值']=100
# 本地修改后要push到服务器上
graph.push(node_9)

在这里插入图片描述

4.8 查

为了使用更复杂查询,将图数据库扩充如下:

# 为了便于查询更多类容,新增一些关系和节点
transaction_2 = graph.begin()node_100 = Node('巾帼',name ='赵敏')
re_100 = Relationship(node_1,'Love',node_100)node_101 = Node('巾帼',name ='周芷若')
re_101 = Relationship(node_1,'knows',node_101)
re_101_ = Relationship(node_101,'hate',node_100)node_102 = Node('巾帼',name ='小昭')
re_102 = Relationship(node_1,'konws',node_102)node_103 = Node('巾帼',name ='蛛儿')
re_103 = Relationship(node_103,'Love',node_1)transaction_2.create(node_100)
transaction_2.create(re_100)
transaction_2.create(node_101)
transaction_2.create(re_101)
transaction_2.create(re_101_)
transaction_2.create(node_102)
transaction_2.create(re_102)
transaction_2.create(node_103)
transaction_2.create(re_103)transaction_2.commit()

在这里插入图片描述

① NodeMatcher:定位满足特定条件的节点
基本语法:NodeMatcher.match(*labels, **properties)

方法名功能
first()返回查询结果第一个Node,没有则返回空
all()返回所有节点
where(condition,properties)二次过滤查询结果
order_by排序
# 定义查询
nodes = NodeMatcher(graph)# 按照label查询所有节点
node_hero = nodes.match("英雄").all()
print('查询结果的数据类型:',type(node_hero))# 按property查询,返回符合要求的首个节点:name-杨逍
node_single = nodes.match("英雄", name="杨逍").first()
print('单节点查询:\n', node_)# 按property查询,返回符合要求的所有节点
node_name = nodes.match(name='张无忌').all()
print('name查询结果:', node_name)# 在查询结果中循环取值
i = 0
for node in node_hero:print('label查询第{}个为:{}'.format(i,node))i+=1# get()方法按照id查询节点
node_id = nodes.get(1)
print('id查询结果:', node_id)

② NodeMatch
基本用法:NodeMatch(graph, labels=frozenset({}), predicates=(), order_by=(), skip=None, limit=None)

方法功能
iter(match)遍历所匹配节点
len(match)返回匹配到的节点个数
all()返回所有节点
count()返回节点计数,评估所选择的节点
limit(amount)返回节点的最大个数
order_by(*fields)按指定的字段或字段表达式排序 要引用字段或字段表达式中的当前节点,请使用下划线字符
where(*predicates, **properties)二次过滤
from py2neo import NodeMatchnodess = NodeMatch(graph, labels=frozenset({'英雄'}))# 遍历查询到的节点
print('=' * 15, '遍历所有节点', '=' * 15)
for node in iter(nodess):print(node)
# 查询结果计数
print('=' * 15, '查询结果计数', '=' * 15)
print(nodess.count())
# 按照武力值排序查询结果:注意引用字段的方式,前面要加下划线和点:_.武力值
print('=' * 10, '按照武力值排序查询结果', '=' * 10)
wu = nodess.order_by('_.武力值')
for i in wu:print(i)

③ RelationshipMatcher:用于选择满足一组特定标准的关系的匹配器
基础语法:relation = RelationshipMatcher(graph)

from py2neo import RelationshipMatcher
# 查询某条关系
relation = RelationshipMatcher(graph)# None表示any node,而非表示空
print('='*10,'hate关系查询结果','='*10)
x = relation.match(nodes=None, r_type='hate')
for x_ in x:print(x_)# 增加关系
re1_1 = Relationship(node_101,'情敌',node_102)
re1_2 = Relationship(node_102,'情敌',node_103)
graph.create(re1_1)
graph.create(re1_2)# 情敌查询结果
print('='*10,'hate关系查询结果','='*10)
x = relation.match(nodes=None, r_type='情敌')
for x_ in x:print(x_)   

④ RelationshipMatch
基本语法:RelationshipMatch(graph, nodes=None, r_type=None, predicates=(), order_by=(), skip=None, limit=None)
用法类同,不再赘述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/693792.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

重磅!移远通信正式发布一站式XR产品解决方案,助力探索数字世界新纪元

伴随着以5G、大数据、云计算等现代化信息科技的发展&#xff0c;人类对数字世界、智慧地球的探索更加深入。尤其是以XR&#xff08;扩展现实&#xff09;为代表的技术崛起&#xff0c;更让物理世界与虚拟世界中的连接愈发紧密&#xff0c;千行百业也亟待新探索。 近日&#xff…

计算机组成原理(4)-----Cache的原理及相关知识点

目录 1.Cache的原理 2.Cache的性能 3.Cache和主存的映射方式 &#xff08;1&#xff09;全相联映射 &#xff08;2&#xff09;直接映射 &#xff08;3&#xff09;组相联映射 4.替换算法 (1)随机算法(RAND) (2)先进先出算法(FIFO) (3)近期最少使用(LRU) (4)最近不经…

论文阅读:How Do Neural Networks See Depth in Single Images?

是由Technische Universiteit Delft(代尔夫特理工大学)发表于ICCV,2019。这篇文章的研究内容很有趣,没有关注如何提升深度网络的性能&#xff0c;而是关注单目深度估计的工作机理。 What they find&#xff1f; 所有的网络都忽略了物体的实际大小&#xff0c;而关注他们的垂直…

WEB APIs (4)

日期对象 实例化 代码中出现new关键字&#xff0c;创建时间对象 得到当前时间&#xff1a; const date new Date&#xff08;&#xff09; 获得指定时间&#xff1a; const date new Date&#xff08;‘2022-5-1’&#xff09; 方法作用说明getFullYear()获取年份获取…

搜索专项---DFS之连通性模型

文章目录 迷宫红与黑 一、迷宫OJ链接 本题思路:DFS直接搜即可。 #include <iostream> #include <cstring> #include <algorithm>constexpr int N110;int n; char g[N][N]; bool st[N][N]; int x1, y1, x2, y2;int dx[4] {-1, 0, 1, 0}, dy[4] {0, 1, 0, …

2024 高级前端面试题之 计算机通识(基础) 「精选篇」

该内容主要整理关于 计算机通识&#xff08;基础&#xff09; 的相关面试题&#xff0c;其他内容面试题请移步至 「最新最全的前端面试题集锦」 查看。 计算机基础精选篇 一、网络1.1 UDP1.2 TCP1.3 HTTP1.4 DNS 二、数据结构2.1 栈2.2 队列2.3 链表2.4 树2.5 堆 三、算法3.1 时…

使用 Nuxt 构建简单后端接口及数据库数据请求

写在前面 本文主要为大家介绍&#xff0c;如何使用 Nuxt 框架实现一个简单的后端接口&#xff0c;并且从数据库中请求数据返回给前端。 实现 创建 serverMiddleware 文件夹 首先我们新建一个名字为 serverMiddleware 文件夹用来存储接口相关信息 目录结构如下&#xff1a;…

汽车电子论文学习--电动汽车电机驱动系统动力学特性分析

关键重点&#xff1a; 1. 汽车的低速转矩存在最大限制&#xff0c;受附着力限制&#xff0c;因路面不同而变化。 2. 起步加速至规定转速的时间可以计算得到&#xff1a; 3. 电机额定功率的计算方式&#xff1a; 可以采取最高设计车速90%或120km/h匀速行驶的功率作为电机额定功…

如何区分期权,很简单WeTrade众汇教你两招

二元期权有许多变体&#xff0c;很多投资者难以区分外汇和二元期权&#xff0c;很简单WeTrade众汇教你两招1秒快速区分&#xff0c;我们可以根据这两个最重要的参数进行区分: 1)合同类型的范围 只有一种外汇合约。当然&#xff0c;你可以交易货币对、差价合约、商品或证券&am…

脉冲电流源测试旁路二极管热性能方案

热斑效应&#xff1a;太阳能电池一般是由多块电池组件串联或并联起来。串联支路中可能由于电池片内部缺陷或者外部遮挡&#xff0c;将被当作负载消耗其他有光照的太阳电池组件所产生的能量。被遮蔽的太阳电池组件此时会严重发热而受损。 旁路二极管&#xff1a;是指并联于太阳能…

Nginx 403 forbidden

1、没有权限问题 Linux系统中如果Nginx没有web目录的操作权限&#xff0c;也会出现403错误。解决办法&#xff1a;修改web目录的读写权限&#xff0c;或者是把Nginx的启动用户改成目录的所属用户&#xff0c;重启Nginx即可解决。(windows 下则用管理员启动nginx即可)。 chmod -…

Android全新UI框架之Jetpack Compose入门基础

Jetpack Compose是什么 如果有跨端开发经验的同学&#xff0c;理解和学习compose可能没有那么大的压力。简单地说&#xff0c;compose可以让Android的原生开发也可以使用类似rn的jsx的语法来开发UI界面。以往&#xff0c;我们开发Android原生页面的时候&#xff0c;通常是在xml…

第2.4章 StarRocks表设计——分区分桶与副本数

目录 一、数据分布 1.1 概述 1.2 数据分布方式 1.2.1 Round-Robin 1.2.2 Range 1.2.3 List 1.2.4 Hash 1.3 StarRocks的数据分布方式 1.3.1 不分区 Hash分桶 1.3.2 Range分区Hash分桶 三、分区 3.1 分区概述 3.2 创建分区 3.2.1 手动创建分区 3.2.2 批量创建分区…

OJ_不连续1的子串

题干 C实现 #include<iostream> using namespace std;int f0(int n); int f1(int n);int main() {int n;cin >> n;cout << f0(n) f1(n);return 0; }int f0(int n) {//末尾为0的串if (n 1) {return 1;}else {return f0(n - 1) f1(n - 1);} } int f1(int n…

多维时序 | Matlab实现TCN-RVM时间卷积神经网络结合相关向量机多变量时间序列预测

多维时序 | Matlab实现TCN-RVM时间卷积神经网络结合相关向量机多变量时间序列预测 目录 多维时序 | Matlab实现TCN-RVM时间卷积神经网络结合相关向量机多变量时间序列预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现TCN-RVM时间卷积神经网络结合相关向量机…

【STM32】如何将版本信息编进代码?

文章目录 参考const uint8_t cu8RteBspVerName[]__attribute__((section(".ARM.__at_0x8011DA6"))) = "SY_ECU_STM32H563_V1.0.0.0";

C#,洗牌问题(Card Shuffle Problem)的算法与源代码

1 洗牌问题&#xff08;Card Shuffle Problem&#xff09; 洗牌问题&#xff08;Card Shuffle Problem&#xff09;的基本描述 你有 100 张牌&#xff0c;从 1 到 100。 你把它们分成 k 堆&#xff0c;然后按顺序收集回来。 例如&#xff0c;如果您将它们分成 4 堆&#xff0…

《Solidity 简易速速上手小册》第9章:DApp 开发与 Solidity 集成(2024 最新版)

文章目录 9.1 DApp 的架构和设计9.1.1 基础知识解析更深入的理解实际操作技巧 9.1.2 重点案例&#xff1a;去中心化社交媒体平台案例 Demo&#xff1a;创建去中心化社交媒体平台案例代码SocialMedia.sol - 智能合约前端界面 测试和验证拓展功能 9.1.3 拓展案例 1&#xff1a;去…

ASP.NET-实现图形验证码

ASP.NET 实现图形验证码能够增强网站安全性&#xff0c;防止机器人攻击。通过生成随机验证码并将其绘制成图像&#xff0c;用户在输入验证码时增加了人机交互的难度。本文介绍了如何使用 C# 和 ASP.NET 创建一个简单而有效的图形验证码系统&#xff0c;包括生成随机验证码、绘制…

《社交网络》计算机电影题材赏析及电影推荐

《社交网络》&#xff08;The Social Network&#xff09;是一部2010年上映的传记剧情片&#xff0c;由大卫芬奇执导&#xff0c;主要讲述了Facebook创始人马克扎克伯格的创业历程和与合作伙伴之间的法律纠纷。 剧情 开场&#xff1a; 马克扎克伯格&#xff08;由杰西艾森伯格…