C# OpenCvSharp DNN Low Light image Enhancement

目录

介绍

效果

模型信息

项目

代码

下载


C# OpenCvSharp DNN Low Light image Enhancement

介绍

github地址:https://github.com/zhenqifu/PairLIE

  

效果

模型信息

 Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:input
tensor:Float[1, 3, 512, 512]
name:exposure
tensor:Float[1]
---------------------------------------------------------------

Outputs
-------------------------
name:output
tensor:Float[1, 3, 512, 512]
---------------------------------------------------------------
 

项目

代码

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Linq.Expressions;
using System.Numerics;
using System.Reflection;
using System.Windows.Forms;

namespace OpenCvSharp_DNN_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        string modelpath;

        int inpHeight;
        int inpWidth;

        Net opencv_net;
        Mat BN_image;

        Mat image;
        Mat result_image;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            modelpath = "model/pairlie_512x512.onnx";

            inpHeight = 512;
            inpWidth = 512;

            opencv_net = CvDnn.ReadNetFromOnnx(modelpath);

            image_path = "test_img/1.png";
            pictureBox1.Image = new Bitmap(image_path);

        }

        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            pictureBox2.Image = null;
            Application.DoEvents();

            image = new Mat(image_path);

            int srch = image.Rows;
            int srcw = image.Cols;

            BN_image = CvDnn.BlobFromImage(image, 1 / 255.0, new OpenCvSharp.Size(inpWidth, inpHeight), new Scalar(0, 0, 0), true, false);

            opencv_net.SetInput(BN_image, "input");

            Mat one = new Mat(1,1,MatType.CV_32F,new float[] { 0.5f});
            Mat exposure = CvDnn.BlobFromImage(one);

            opencv_net.SetInput(exposure, "exposure");

            //模型推理,读取推理结果
            Mat[] outs = new Mat[1] { new Mat() };
            string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();

            dt1 = DateTime.Now;

            opencv_net.Forward(outs, outBlobNames);

            dt2 = DateTime.Now;

            float* pdata = (float*)outs[0].Data;
            int out_h = outs[0].Size(2);
            int out_w = outs[0].Size(3);
            int channel_step = out_h * out_w;
            float[] data = new float[channel_step * 3];
            for (int i = 0; i < data.Length; i++)
            {
                data[i] = pdata[i] * 255;

                if (data[i] < 0)
                {
                    data[i] = 0;
                }
                else if (data[i] > 255)
                {
                    data[i] = 255;
                }
            }

            float[] temp_r = new float[out_h * out_w];
            float[] temp_g = new float[out_h * out_w];
            float[] temp_b = new float[out_h * out_w];

            Array.Copy(data, temp_r, out_h * out_w);
            Array.Copy(data, out_h * out_w, temp_g, 0, out_h * out_w);
            Array.Copy(data, out_h * out_w * 2, temp_b, 0, out_h * out_w);

            Mat rmat = new Mat(out_h, out_w, MatType.CV_32F, temp_r);
            Mat gmat = new Mat(out_h, out_w, MatType.CV_32F, temp_g);
            Mat bmat = new Mat(out_h, out_w, MatType.CV_32F, temp_b);

            result_image = new Mat();
            Cv2.Merge(new Mat[] { bmat, gmat, rmat }, result_image);

            result_image.ConvertTo(result_image, MatType.CV_8UC3);

            Cv2.Resize(result_image, result_image, new OpenCvSharp.Size(srcw, srch));

            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Linq.Expressions;
using System.Numerics;
using System.Reflection;
using System.Windows.Forms;namespace OpenCvSharp_DNN_Demo
{public partial class frmMain : Form{public frmMain(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string modelpath;int inpHeight;int inpWidth;Net opencv_net;Mat BN_image;Mat image;Mat result_image;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;pictureBox2.Image = null;textBox1.Text = "";image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);}private void Form1_Load(object sender, EventArgs e){modelpath = "model/pairlie_512x512.onnx";inpHeight = 512;inpWidth = 512;opencv_net = CvDnn.ReadNetFromOnnx(modelpath);image_path = "test_img/1.png";pictureBox1.Image = new Bitmap(image_path);}private unsafe void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}textBox1.Text = "检测中,请稍等……";pictureBox2.Image = null;Application.DoEvents();image = new Mat(image_path);int srch = image.Rows;int srcw = image.Cols;BN_image = CvDnn.BlobFromImage(image, 1 / 255.0, new OpenCvSharp.Size(inpWidth, inpHeight), new Scalar(0, 0, 0), true, false);opencv_net.SetInput(BN_image, "input");Mat one = new Mat(1,1,MatType.CV_32F,new float[] { 0.5f});Mat exposure = CvDnn.BlobFromImage(one);opencv_net.SetInput(exposure, "exposure");//模型推理,读取推理结果Mat[] outs = new Mat[1] { new Mat() };string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();dt1 = DateTime.Now;opencv_net.Forward(outs, outBlobNames);dt2 = DateTime.Now;float* pdata = (float*)outs[0].Data;int out_h = outs[0].Size(2);int out_w = outs[0].Size(3);int channel_step = out_h * out_w;float[] data = new float[channel_step * 3];for (int i = 0; i < data.Length; i++){data[i] = pdata[i] * 255;if (data[i] < 0){data[i] = 0;}else if (data[i] > 255){data[i] = 255;}}float[] temp_r = new float[out_h * out_w];float[] temp_g = new float[out_h * out_w];float[] temp_b = new float[out_h * out_w];Array.Copy(data, temp_r, out_h * out_w);Array.Copy(data, out_h * out_w, temp_g, 0, out_h * out_w);Array.Copy(data, out_h * out_w * 2, temp_b, 0, out_h * out_w);Mat rmat = new Mat(out_h, out_w, MatType.CV_32F, temp_r);Mat gmat = new Mat(out_h, out_w, MatType.CV_32F, temp_g);Mat bmat = new Mat(out_h, out_w, MatType.CV_32F, temp_b);result_image = new Mat();Cv2.Merge(new Mat[] { bmat, gmat, rmat }, result_image);result_image.ConvertTo(result_image, MatType.CV_8UC3);Cv2.Resize(result_image, result_image, new OpenCvSharp.Size(srcw, srch));pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";}private void pictureBox2_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox2.Image);}private void pictureBox1_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox1.Image);}}
}

下载

源码下载

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/692020.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

文献学习-1-Continuum Robots for Medical Interventions

Chapt 5. 连续体机构分析 5.1 文献学习 5.1.1 Continuum Robots for Medical Interventions Authors: PIERRE E. DUPONT , Fellow IEEE, NABIL SIMAAN , Fellow IEEE, HOWIE CHOSET , Fellow IEEE, AND CALEB RUCKER , Member IEEE 连续体机器人在医学上得到了广泛的应用&a…

卷积神经网络的基本结构

卷积神经网络的基本结构 与传统的全连接神经网络一样&#xff0c;卷积神经网络依然是一个层级网络&#xff0c;只不过层的功能和形式发生了变化。 典型的CNN结构包括&#xff1a; 数据输入层&#xff08;Input Layer&#xff09;卷积层&#xff08;Convolutional Layer&#x…

Avalonia学习(二十四)-系统界面

目前项目式练习&#xff0c;界面内容偏多&#xff0c;所以不给大家贴代码了&#xff0c;可以留言交流。此次为大家展示的是物联项目的例子&#xff0c;仅仅是学习&#xff0c;我把一些重点列举一下。 界面无边框 以前的样例主要是通过实现控件来完成的&#xff0c;前面已经有窗…

Linux命令:stat命令

目录 1 简介2 说明3 实例-L&#xff1a;显示链接指向的文件的信息-f&#xff1a;显示文件系统信息-t&#xff1a;以简洁的形式输出 1 简介 stat命令&#xff1a;显示文件或文件系统的状态 2 说明 使用&#xff1a;stat [OPTION]… FILE 常用选项&#xff1a; -L, --derefer…

c语言游戏实战(9):球球大作战

前言&#xff1a; 这款简易版的球球大作战是一款单人游戏&#xff0c;玩家需要控制一个小球在地图上移动&#xff0c;吞噬其他小球来增大自己的体积。本游戏使用C语言和easyx图形库编写&#xff0c;旨在帮助初学者了解游戏开发的基本概念和技巧。 在开始编写代码之前&#xf…

新算法UoT助力AI提问——主动寻求信息,任务完成率提高57.8%

引言&#xff1a;信息寻求在不确定性环境中的重要性 在不确定性环境中&#xff0c;信息寻求的能力至关重要。在许多实际应用中&#xff0c;如医学诊断和故障排除&#xff0c;解决任务所需的信息并非一开始就给出&#xff0c;而需要通过提问后续问题来主动寻求&#xff08;例如…

使用AndroidStudio调试Framework

1.前言 最近在工作过程中&#xff0c;涉及到FW的一些修改&#xff0c;比如PhoneWindowManager&#xff0c;只能通过加日志看打印的方式查看一些内容&#xff0c;比较低效&#xff0c;所以想了解一下FW的调试方式&#xff0c;后来发现AS就可以调试FW.我平时都是在Docker服务器编…

K8S部署MySQL主从环境

1.创建mysql主从环境的命名空间 [rootk8s-master1 mysql]# kubectl create ns mysql namespace/mysql created2.创建master的pvc [rootk8s-master1 mysql]# cat mysql-master-pvc.yaml apiVersion: v1 kind: PersistentVolumeClaim metadata:name: mysql-pvcnamespace: mysql…

人工智能专业python论文毕设方向推荐

文章目录 0 前言1 如何选题1.1 选题技巧&#xff1a;如何避坑(重中之重)1.2 为什么这么说呢&#xff1f;1.3 难度把控1.4 题目名称1.5 最后 2 选题推荐2.1 &#x1f525;&#x1f525; 数据分析可视化选题推荐 &#x1f525;&#x1f525;2.2 &#x1f525;&#x1f525; 算法类…

网站管理新利器:免费在线生成 robots.txt 文件!

&#x1f916; 探索网站管理新利器&#xff1a;免费在线生成 robots.txt 文件&#xff01; 你是否曾为搜索引擎爬虫而烦恼&#xff1f;现在&#xff0c;我们推出全新的在线 robots.txt 文件生成工具&#xff0c;让你轻松管理网站爬虫访问权限&#xff0c;提升网站的可搜索性和…

代码随想录算法训练营——总结篇

不知不觉跟完了代码训练营为期两个月的训练&#xff0c;现在来做个总结吧~ 记得去年12月上旬的时候&#xff0c;我每天都非常浮躁。一方面&#xff0c;经历了三个多月的秋招&#xff0c;我的日常学习和实验室进展被完全打乱&#xff0c;导致状态很差&#xff1b;另一方面&#…

Redis(十四)双写一致性工程案例

文章目录 问题概述canal功能安装部署mysql配置canal服务端canal客户端&#xff08;Java程序&#xff09; 问题概述 canal https://github.com/alibaba/canal 功能 数据库镜像数据库实时备份索引构建和实时维护(拆分异构索引、倒排索引等)业务 cache 刷新带业务逻辑的增量数据…

OpenCV 4基础篇| 色彩空间类型转换

目录 1. 色彩空间基础2. 色彩空间类型2.1 GRAY 色彩空间2.2 BGR 色彩空间2.3 CMY(K) 色彩空间2.4 XYZ 色彩空间2.5 HSV 色彩空间2.6 HLS 色彩空间2.7 CIEL*a*b* 色彩空间2.8 CIEL*u*v* 色彩空间2.9 YCrCb 色彩空间 3. 类型转换函数3.1 cv2.cvtColor3.2 cv2.inRange 1. 色彩空间…

安达发|APS生产排程软件6大核心技术

APS生产排程软件是一种先进的生产计划和调度工具&#xff0c;它通过整合企业内外部资源&#xff0c;实现生产计划的优化和生产过程的自动化控制。APS生产排程软件的核心技术包括产品工艺数据管理&#xff08;PDM&#xff09;、客户需求管理&#xff08;CRM&#xff09;、高级计…

生成自己的rola模型简单版四步完成

工具准备&#xff1a;秋叶整合包&#xff0c;lora 训练器 秋叶整合包地址&#xff1a;https://pan.quark.cn/s/2c832199b09b#/list/share lora训练器地址&#xff1a;lora训练器_免费高速下载|百度网盘-分享无限制 (baidu.com) 第一章 图像预处理 根据自己需要准备一个图片…

软件工具安装遇到bug、报错不知道怎么解决?看这里!

前言 本文举例了几个常见的软件工具使用问题&#xff0c;文末会提供一些我自己整理和使用的工具资料 。 "在追逐零 Bug 的路上&#xff0c;我们不断学习、改进&#xff0c;更加坚定自己的技术信念。让我们相信&#xff0c;每一个 Bug 都是我们成长的机会。" 一、VM…

LeetCode 热题 100 | 二叉树(中下)

目录 1 基础知识 1.1 队列 queue 1.2 栈 stack 1.3 常用数据结构 1.4 排序 2 98. 验证二叉搜索树 3 230. 二叉搜索树中第 K 小的元素 4 199. 二叉树的右视图 菜鸟做题忘了第几周&#xff0c;躺平过了个年TT 1 基础知识 1.1 队列 queue queue<type> q…

点云配准SIFT+SI+RANSAC+ICP

SIFT、RANSAC和ICP都介绍够了,就不赘述了,简单说以下SI特征描述子。主要是分享一下代码。 1 Spin Image(SI)特征描述子简介 Spin Image(SI)是一种用于点云数据描述的特征描述子,广泛应用于三维点云配准、识别和重建等领域。它能够捕捉点云中的局部几何信息,具有旋转不…

docker搭建现成的靶场

Docker安装&#xff1a; apt-get install docker.ioUpload-labs——文件上传靶场搭建&#xff1a; ​ 因为Docker hub上存在镜像源&#xff0c;所以&#xff0c;索性直接拉取过来&#xff0c; docker pull c0ny1/upload-labs​ 等到下载完成之后&#xff0c;就可以创建容器&…

个人建站前端篇(五)插件unplugin-vue-components的使用

unplugin-vue-components 是由 Vue官方人员开发的一款自动引入插件&#xff0c;可以省去比如 UI 库的大量 import 语句。 unplugin-vue-components 插件可以在Vue文件中自动引入组件&#xff08;包括项目自身的组件和各种组件库中的组件&#xff09;使用此插件后&#xff0c;不…