生成对抗网络----GAN

系列文章目录

`


文章目录

  • 系列文章目录
  • 前言
  • 一、基本构成
  • 二、应用领域
  • 三、基本原理
  • 四、如何训练GAN


前言


一、基本构成

GAN (Generative Adversarial Network) : 通过两个神经网络,即生成器(Generator)和判别器(Discriminator),相互竞争来学习数据分布。

{ 生成器 ( G e n e r a t o r ) : 负责从随机噪声中学习生成与真实数据相似的数据。 判别器 ( D i s c r i m i n a t o r ) : 尝试区分生成的数据和真实数据。 \left\{ \begin{array}{l} 生成器(Generator):负责从随机噪声中学习生成与真实数据相似的数据。 \\ \\ 判别器(Discriminator):尝试区分生成的数据和真实数据。 \\ \end{array}\right. 生成器(Generator):负责从随机噪声中学习生成与真实数据相似的数据。判别器(Discriminator):尝试区分生成的数据和真实数据。

二、应用领域

  1. 图像生成:如风格迁移、人脸生成等。

  2. 数据增强:通过生成额外的样本来增强训练集。

  3. 医学图像分析:例如通过GAN生成医学图像以辅助诊断。

  4. 图像超分辨:SRGAN

三、基本原理

GANs的目标是通过学习一个生成模型G来尽可能接近真实数据分布。

在这里插入图片描述
生成网络采用随机输入,G(z)从P(z)获取输入z(noise),其中z是来自概率分布P(z)的样本,z~P(z),生成器产生Fake Samples送入D(x)。

Pdata(x) ------真实数据的分布 x-----Pdata(x)的样本
P(z)------生成器的分布 z-----P(z)的样本
G(z)-----生成网络 D(x)----判别网络

x 是一个真实图片,可以想象成一个向量,这个向量分布集合就是Pdata(x)

目标是min G ~=0
max D ~=1
在这里插入图片描述
生成器的目标是最大化判别器对其生成样本的错误分类概率,其中,(G(z)) 表示生成器从随机噪声 (z) 生成的样本,(D(x)) 是判别器对样本 (x) 为真实的概率估计。

上面目标函数实际上是两个二元交叉熵的和,其对应于判别器D对真实样本和生成样本的分类能力。判别器D的目标是最大化以下目标函数,找到能够最小化的生成器G。

V(D,G) :判别器最大化,生成器想最小化

第一项:是实际分布Pdata(x)的数据,通过判别器的熵,试图将其最大化为1

第二项:是随机输入P(Z)的数据通过G的熵,判别器尝试将其最小化为0

对抗损失函数一般由两部分组成:

判别器的损失项(Discriminator Loss):这一部分表示判别器要尽可能准确地区分真实数据和生成器生成的数据。判别器试图最大化这个值,以便更好地区分真实数据和生成的数据。
生成器的损失项(Generator Loss):这一部分表示生成器试图生成足够逼真的数据,以至于判别器无法轻易区分生成的数据和真实数据。生成器试图最小化这个值。
具体来说,判别器的损失项旨在最大化以下两个期望值:

真实数据的判别概率(判别器越接近1越好)
生成数据的判别概率(判别器越接近0越好)
而生成器的损失项旨在最小化生成数据的判别概率(生成器希望判别器难以将其识别为生成数据)。

通过优化这个对抗损失函数,生成器和判别器不断调整自己的参数,最终使得生成器可以生成非常逼真的数据,同时判别器难以区分真实数据和生成的数据。

四、如何训练GAN

  1. 训练判别器,冻结生成器
  2. 训练生成器,冻结判别器

冻结:即不训练,神经网络只进行前向传播不进行反向传播

训练步骤:

step1: 定义问题,生成假图像还是文字,收集相应数据
step2: 定义GAN的架构,生成器和判别器可以使用多层感知机或者卷积神经网络
step3: 用真实数据训练N个epoch,训练判别器正确预测假的数据为假
step4: 用生成器产生假的输入数据,用来训练判别器,训练判别器正确预测假的数据为假
step5: 用判别器的输出来训练生成器 当判别器被训练后,将其预测值作为标记来训练生成器以迷惑判别器
step6: 重复3~5多个epoch
step7: 手动检查数据是否合理,合理即停止,否则回到step3

一般来说,Discrimnator比Genenrator训练的多,比如训练五次Discrimnator,再训练一次Genenrator。

训练GAN时最重要的阻碍—稳定

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/691409.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AtCoder Beginner Contest 341 D - Only one of two (Java)

AtCoder Beginner Contest 341 D - Only one of two (Java) 比赛链接:AtCoder Beginner Contest 341 D题传送门AtCoder:D - Only one of two D题传送门洛谷:[ABC341D] Only one of two 题目:[ABC341D】 Only one of two 题目…

安卓游戏开发之图形渲染技术优劣分析

一、引言 随着移动设备的普及和性能的提升,安卓游戏开发已经成为一个热门领域。在安卓游戏开发中,图形渲染技术是关键的一环。本文将对安卓游戏开发中常用的图形渲染技术进行分析,比较它们的优劣,并探讨它们在不同应用场景下的适用…

python+django+vue汽车票在线预订系统58ip7

本课题使用Python语言进行开发。基于web,代码层面的操作主要在PyCharm中进行,将系统所使用到的表以及数据存储到MySQL数据库中 使用说明 使用Navicat或者其它工具,在mysql中创建对应名称的数据库,并导入项目的sql文件; 使用PyChar…

好书推荐丨《细说机器学习:从理论到实践》

文章目录 写在前面机器学习推荐图书内容简介编辑推荐作者简介 推荐理由粉丝福利写在最后 写在前面 本期博主给大家推荐一本有关机器学习的全新正版书籍,对机器学习、人工智能感兴趣的小伙伴们快来看看吧~ 机器学习 机器学习(Machine Learning, ML&…

※【回溯】【深度优先前序】Leetcode 257. 二叉树的所有路径

※【回溯】【深度优先前序】Leetcode 257. 二叉树的所有路径 解法0 迭代法解法1 深度优先 前序解法2 深度优先 前序 添加了StringBulider ---------------🎈🎈257. 二叉树的所有路径 题目链接🎈🎈------------------- 解法0 迭代法…

08MARL深度强化学习 independent learning

文章目录 前言1、Independent Value-based Learning2、Independent Policy Gradient Methods 前言 记录independent learning算法的基础概念,使用一些RL算法训练多智能体 1、Independent Value-based Learning 基于值的独立学习算法:每个智能体根据自身…

51-2 万字长文,深度解读端到端自动驾驶的挑战和前沿

去年初,我曾打算撰写一篇关于端到端自动驾驶的文章,发现大模型在自动驾驶领域的尝试案例并不多。遂把议题扩散了一点,即从大模型开始,逐渐向自动驾驶垂直领域靠近,最后落地到端到端。这样需要阐述的内容就变成LLM基础模…

【Docker】集群容器监控和统计 Portainer基本用法

Portainer是一款轻量级的应用,它提供了图形化界面,用川于方便地管理Docker环境,包括单机环境和集群环境。 主要功能:实现集群容器的监控和统计 下载安装 官网:https://www.portainer.io 文档:https://do…

Python Selenium实现自动化测试及Chrome驱动使用

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站零基础入门的AI学习网站~。 目录 ​编辑 前言 Selenium简介 安装Selenium库 编写自动化测试脚本 1 打开浏览器并访问网页 2 查找页面元…

Docker Desktop 链接windos 安装的redis和mysql

1.1.先在容器安装项目 2.链接redis和mysql配置 redis和mysql是在windos安装的,使用的是小p管理器安装的 项目链接 DB_DRIVERmysql DB_HOSThost.docker.internal DB_PORT3306 DB_DATABASEyunxc_test DB_USERNAMEyunxc_test DB_PASSWORDtest123456... DB_CHARSETutf…

一周学会Django5 Python Web开发-Django5路由变量

锋哥原创的Python Web开发 Django5视频教程: 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计22条视频,包括:2024版 Django5 Python we…

SPSSAU【文本分析】|文本聚类

SPSSAU共提供两种文本聚类方式,分别是按词聚类和按行聚类。按词聚类是指将需要分析的关键词进行聚类分析,并且进行可视化展示,即针对关键词进行聚类,此处关键词可以自由选择。按行聚类分析是指针对以‘行’为单位进行聚类分析&…

【数据结构】图的最小生成树

最小生成树 一个图中有N个顶点,边的数量一定是>N-1,我们从中选取N-1条边,用来连接N个点,所形成的边权之和最小,就是最小生成树。 构成最小生成树的准则 只能使用图中的边来构造最小生成树只能使用恰好n-1条边来连…

Stable Diffusion 绘画入门教程(webui)-提示词

通过上一篇文章大家应该已经掌握了sd的使用流程,本篇文章重点讲一下提示词应该如何写 AI绘画本身就是通过我们写一些提示词,然后生成对应的画面,所以提示词的重要性不言而喻。 要想生成更加符合自己脑海里画面的图片,就尽量按照…

术业有专攻!三防加固平板助力工业起飞

在日常使用中的商业电脑比较追求时效性,以市场定位做标准,内部元件只需满足一般要求就行,使用寿命比较短。而三防平板电脑是主要运用在复杂、恶劣的环境下所以在需求方面较高,需要保证产品在恶劣条件下正常使用,满足行业领域的需求…

【CCEdit】通过扩散模型进行创意且可控的视频编辑

文章目录 CCEdit1. 核心特性1.1 三叉戟网络结构1.2 精细的外观控制1.3 高度的自适应性 2. 三叉戟结构2.1 结构分支(ControlNet架构)2.2 外观分支2.3 主分支 3. 数据集——BalanceCC benchmark dataset4. 训练5. 长视频编辑6. 使用场景7. 评估指标 CCEdit…

单片机01天---stm32基本信息了解

下载数据手册 以STM32F407ZG为例 网站:www.st.com,搜索芯片型号,下载“数据手册”使用 数据手册使用 查看芯片型号信息 芯片资源信息 时钟框图 芯片资源表格下方 GPIO口表格 一般位于下图后面的位置 ①工作电压:1.8V – 3.6V…

Idea启动Gradle报错: Please, re-import the Gradle project and try again

Idea启动Gradle报错:Warning:Unable to make the module: reading, related gradle configuration was not found. Please, re-import the Gradle project and try again. 解决办法: 开启步骤:View -> Tool Windows -> Gradle 点击refe…

HN 千赞热贴|创业 4 年,那些狠狠打我脸的技术选型

Hacker News 帖子 过年这段时间,Hacker News 上也涌现了不少好帖子,除了霸榜的 Sora 外,技术贴最靠前的就是这篇 (Almost) Every infrastructure decision I endorse or regret after 4 years running infrastructure at a startup。作者根据…

【Django开发】0到1开发美多shop项目:图形和短信验证码。全md文档笔记(附代码,已分享)

本系列文章md笔记(已分享)主要讨论django商城项目相关知识。项目利用Django框架开发一套前后端不分离的商城项目(4.0版本)含代码和文档。功能包括前后端不分离,方便SEO。采用Django Jinja2模板引擎 Vue.js实现前后端…