Pulsar-架构与设计

Pulsar架构与设计

  • 一、背景和起源
  • 二、框架概述
    • 1.设计特点
    • 2.框架适用场景
  • 三、架构图
    • 1.Broker
    • 2.持久化存储(Persistent storage)
    • 3.Pulsar元数据(Metadata store)
  • 四、功能特性
    • 1.消息顺序性
    • 2.消息回溯
    • 3.消息去重
    • 4.消息重投递
    • 5.消息重试
    • 6.消息TTL
    • 7.延迟队列
    • 8.重试队列
    • 9.死信队列
    • 10.消息语义
  • 五、设计原理
    • 1.消息去重
    • 2.消息重试
    • 3.延迟队列
    • 4.消费订阅模式
      • 4.1 独享模式
      • 4.2 灾备模式
      • 4.3 共享模式
      • 4.4 Key共享模式
    • 5.生产访问模式
      • 5.1 共享模式
      • 5.2 独占模式
      • 5.3 独占屏蔽模式
      • 5.4 等待独占模式
  • 总结
  • 参考链接


一、背景和起源

随着云原生的兴起,对消息中间件的伸缩性和多租户隔离有了更高的要求。现有的消息中间件不支持多租户的隔离,但是有一定伸缩性,需要一定的迁移工具支持和手工操作。
Pulsar是下一代云原生分布式消息平台,采用存储和计算分离架构设计,支持弹性伸缩,支持多租户、持久化存储、多机房跨区域数据复制。

二、框架概述

1.设计特点

  • 下一代云原生分布式消息流平台
  • 单实例支持多集群,支持跨机房在集群间消息复制
  • 极低的发布延迟和端到端延迟
  • 支持超过百万的消息主题。
  • 支持多种消息订阅模式(独占、共享和故障转移)
  • 由BookKeeper 提供的持久化消息存储机制保证消息传递
  • 由轻量级的 serverless 计算框架 Pulsar Functions 实现流原生的数据处理。
  • 基于 Pulsar Functions 的 Server less connector 框架 Pulsar IO 使得数据更易移入、移出
    Apache Pulsar。
  • 支持冷热数据分级存储

2.框架适用场景

  • 适用于多租户、云服务场景
  • 适用于业务波动比较大、需要弹性伸缩场景

三、架构图

一个Pulsar实例有多个Pulsar Cluster组成,Pulsar Cluster之间可以进行消息复制。
Pulsar Cluster整体架构和组成如下,其中Broker为无状态服务,用于发布和消费消息,BookKeeper用于存储。

  • Broker集群:用于处理producer发出的消息;将消息存储到BookKeeper集群;将消息分配给consumer;处理集群协调任务。
  • BookKeeper集群:用于消息持久化存储。
  • Zookeeper集群:用于处理多个Pulsar集群之间的协调任务。
    在这里插入图片描述

1.Broker

主要包含以下部分:

  • HTTP服务器:主要是提供系统管理接口、topic查找接口
  • Dispatcher:异步TCP服务器,用于数据传输
  • Managed Ledger:用于缓存从BookKeeper读取的消息

Broker是无状态服务的计算节点;可以通过增加Broker来增加系统的吞吐量;某个Broker节点负载过高,可以将负载迁移到其他Broker节点。

2.持久化存储(Persistent storage)

Pulsar采用BookKeeper作为持久化存储组件。其中Bookie为数据的存储节点,采用分片机制。Bookie支持扩缩容,在扩容过程中不需要将已持久化数据迁移到新存储节点。

3.Pulsar元数据(Metadata store)

Pulsar元数据和BookKeeper元数据可以共享一个Zookeeper集群,也可以使用不同集群。Pulsar使用Zookeeper来进行元数据存储、集群配置和协调。

四、功能特性

1.消息顺序性

可以支持分区顺序性,生产者通过指定的key将消息发送到固定分区,消息订阅模式需要选择独享模式、灾备模式、key共享模式。

2.消息回溯

pulsar默认删除已经被所有Consumer确认消费完成消息,可以通过配置保留已经被消费完成的消息。

3.消息去重

通过服务器设置可以保证消息不会重复持久化存储,保证存储的幂等。

4.消息重投递

消息投递失败,会进行重新投递

5.消息重试

消息消费失败后消息会重新消费

6.消息TTL

支持消息生存期

7.延迟队列

支持任意时间延迟的消息

8.重试队列

重试队列是消费失败后,消息会重新投递到此队列,重试队列按照消费组进行设置的。

9.死信队列

重试次数达到一定次数后,会将消息投递此队列

10.消息语义

支持Exactly Once消息语义,消息确定被写入一次。producer保存发送失败消息再次发送,服务端保证重试多条消息只存储一次。

五、设计原理

1.消息去重

消息去重是指即使消息被Producer多次投递到Broker,也只会被持久化一次。Pulsar可以通过Broker配置开启消息去重功能,不需要应该代码去保证。
实现原理:

  • Producer每个消息都有一个递增的唯一SequenceId
  • Broker针对每个Producer保存已经接受到的最大SequenceId和已经持久化的最大SequenceId
  • Broker接收的消息中SequenceId大于以上SequenceId,则正常处理;如果小于或者等于则为重复消息,直接返回Ack确认

2.消息重试

如果消费组中设置消息主题可以重试,则会(以主题和消费组为度)创建重试队列和死信队列;其中重试队列名称格式为--RETRY;死信队列名称格式为--DLQ;
整体流程为:

  • 消费失败后,会将消息作为延迟消息重新投递到重试队列,利用延迟消息特性使Consumer延后一段时间重新消费
  • 如果重新投递到重试队列超过一定次数,则会把消息投递到死信队列

在这里插入图片描述

3.延迟队列

Broker针对topic每个分区,按照subscription维度维护了DelayedDeliveryTracker优先级队列,队列中以消息的延迟投递时间进行升序排列。

  • 延迟消息投递到Broker后,不用特殊处理直接持久化
  • 消费时,优先检测DelayedDeliveryTracker是否有消息需要消费(延迟投递时间已到);如有则消费;如果没有则消费正常队列消息
  • 消费正常队列消息,如果消息为延迟消息,则需要把消息索引存入到DelayedDeliveryTracker优先级队列
    在这里插入图片描述
    注意:只有在共享模式和key共享模式才支持延迟队列

4.消费订阅模式

pulsar总共有四种消费订阅模式:独享模式、灾备模式、共享模式和Key共享模式;
在这里插入图片描述

4.1 独享模式

此模式下,一个topic的某个消费组中只有一个消费者;即使topic进行了分区,所有分区也是共享同一个消费者。
此模式可以保证全局消息顺序性。

4.2 灾备模式

此模式下,一个topic可以对应多个消费者,但是只有master consumer可以消费,当master出现异常会由其他消费者进行消费。如果topic进行了分区,则每个分区都会对应一个master消费者和多个备用消费者。
此模式可以保证分区消息顺序性。

此模式下分区topic和master消费者之间分配图:
在这里插入图片描述

4.3 共享模式

此模式一个分区对应多个消费者,每个消费者处理分区中的一部分数据,消费者数量可以大于分区数量。此模式下可以通过增加消费者来提高消费速度。

4.4 Key共享模式

此模式一个分区对应多个消费者,每个消费者处理分区中的一部分数据,具有相同Key的消息会分派给相同Consumer处理。此模式下可以通过增加消费者来提高消费速度。
在这里插入图片描述

5.生产访问模式

pulsar总共有四种生产访问模式:共享模式、独占模式、独占屏蔽模式、等待独占模式;

5.1 共享模式

一个Topic可以有多个生产者

5.2 独占模式

一个Topic只能有一个生产者,新生产者连接到topic会直接报错

5.3 独占屏蔽模式

一个Topic只能有一个生产者,新生产者连接Topic,原有的生产者会被断开连接

5.4 等待独占模式

一个Topic只能有一个生产者,新的生产者连接topic会被挂起,直到生产者获取独占访问权。

总结

作为下一代云原生消息队列,Pulsar采用存储和计算分离的架构设计,具有很好的弹性伸缩能力。Pulsar单个实例可以部署多个Pulsar集群,支持多租户、持久化存储、多机房跨区域数据复制。本文主要是介绍一下Pulsar的架构和特性,后续还会对Pulsar进行近一步研读。


参考链接

1.Pulsar简介
2.Pulsar架构
3.Pulsar生产消费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/688462.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

5、Linux 常用指令

一、帮助指令 1.man 指令 语法 man [命令或配置文件] //功能描述:获得帮助手册上的信息查看 ls 命令的帮助信息 man ls信息作用NAME命令名称SYNOPSIS如何使用命令DESCRIPTION描述命令SEE ALSO相关的手册 2.help 指令 语法 help [命令] //功能描述:获得…

题记(44)--矩阵旋转

目录 一、题目内容 二、输入描述 三、输出描述 四、输入输出示例 五、完整C语言代码 一、题目内容 任意输入两个9阶以下矩阵,要求判断第二个是否是第一个的旋转矩阵,如果是,输出旋转角度(0、90、180、270)&#x…

神经网络代码实现

目录 神经网络整体框架 核心计算步骤 参数初始化 矩阵拉伸与还原 前向传播 损失函数定义 反向传播 全部迭代更新完成 数字识别实战 神经网络整体框架 核心计算步骤 参数初始化 # 定义初始化函数 normalize_data是否需要标准化def __init__(self,data,labels,layers,…

Java实现Dfs算法(基本讲解)

目录 一、Dfs算法的概念 二、Dfs算法的设计步骤 三、Dfs算法模板 四、Dfs算法经典例题 (1)全排列 (2)N皇后 一、Dfs算法的概念 Depth First Search 即 DFS,意为深度优先搜索,是所有的搜索手段之一。它…

代码随想录算法训练营第五十二天| 198.打家劫舍、213.打家劫舍II、337.打家劫舍III

198.打家劫舍 题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 解题思路:类似于上台阶,但相邻元素不能相加 java: class Solution {public int rob(int[] nums) {if (nums null || nums.le…

Java多线程系列——锁

0.引言 在并发编程中,锁是一种重要的同步机制,用于控制对共享资源的访问。Java 提供了多种锁的实现,每种锁都有不同的特性和适用场景。本文将深入介绍 Java 中常见的锁类型,包括内置锁、显式锁、读写锁等,并讨论它们的…

设计usb转ttl模块的一些问题

这个是我之前设计的usb转ttl模块,用到的是CH340N芯片,目前遇到的问题以及疑问有以下几个,望大佬们解答: 1 想设计的是一块可以选择3.3V或者5V输出,所以我用了在TTL输出那里加了VCC、VCC3.3V、5V这几个引脚&#xff0c…

114 C++ lambda表达式捕获模式的陷阱分析和展示

一 捕获列表中的 & 捕获外部作用域中的所有变量,(不包括静态变量,静态变量不需要捕获),并作为引用在lambda表达式中使用 按照引用这种捕获方式,会导致lambda表达式包含绑定到局部变量的引用。 问题发…

EXCEL中不错的xlookup函数

excel中一般要经常用vlookup函数,但其实经常麻烦要正序,从左边到右边,还要数列,挺麻烦的,xlookup的函数还不错,有个不错的一套视频介绍,B站的,地址是:XLOOKUP函数基础用法&#xff0…

rust的哈希表

新建哈希表 fn main() { use std::collections::HashMap;let mut scores HashMap::new();scores.insert(String::from("Blue"), 10);scores.insert(String::from("Yellow"), 50);println!("{:?}",scores); }访问某个元素 fn main() { use …

GB 18585-2023 壁纸中有害物质限量

壁纸/墙布因其色彩多样,图案丰富,施工方便,价格便宜等多种优势,广泛应用于室内装修材料,在国内,日本,欧美等地区非常普及。 GB 18585-2023壁纸中有害物质限量测试项目: 测试项目 测…

Eliminating Domain Bias for Federated Learning in Representation Space【文笔可参考】

文章及作者信息: NIPS2023 Jianqing Zhang 上海交通大学 之前中的NeurIPS23论文刚今天传到arxiv上,这次我把federated learning的每一轮看成是一次bi-directional knowledge transfer过程,提出了一种促进server和client之间bi-direction…

Day4. 文件IO的基本概念和读写

温习&#xff1a; 文件的拷贝&#xff08;单个字符&#xff09;(fgetc/fputc) #include <stdio.h>int main(void) {FILE* fp NULL;FILE* fq NULL;char ch 0;fp fopen("str.txt","r");if (fp NULL){perror("file to fopen!");retur…

网络模型及传输基本流程

1.OSI 七层模型 OSI &#xff08; Open System Interconnection &#xff0c;开放系统互连&#xff09;七层网络模型称为开放式系统互联参考模型&#xff0c;是一个逻辑上的定义和规范; 把网络从逻辑上分为了 7 层 . 每一层都有相关、相对应的物理设备&#xff0c;比如路由器…

RCS系统之:冲突解决

在RCS系统中&#xff0c;避免碰撞是至关重要的。以下是一些常见的方法和技术用于避免碰撞&#xff1a; 障碍物检测&#xff1a;机器人可以配备各种传感器&#xff0c;如激光雷达、超声波传感器、摄像头等&#xff0c;用于检测周围的障碍物和环境。通过实时监测周围情况&#xf…

插值与拟合算法介绍

在数据处理和科学计算领域,插值与拟合是两种极为重要的数据分析方法。它们被广泛应用于信号处理、图像处理、机器学习、金融分析等多个领域,对于理解和预测数据趋势具有至关重要的作用。本文将深入浅出地介绍这两种算法的基本原理,并结合C语言编程环境探讨如何在CSDN开发者社…

力扣:139. 单词拆分

动态规划&#xff1a; 1.先声明dp数组的含义为下标i表示的是在s变量中i前面的字符串是否在wordDict变量中存在&#xff0c;初始化dp【0】来进行后面dp数组的递推。同时要判断截取的值是否在wirdDict中是否存在&#xff0c;还要判断dp【j】的下标的j前面的字符串是否也在wirdDi…

数组常见算法代码总结

一、数组排序【冒泡排序】&#xff08;优化&#xff09; 1.基本实现思路: 数组排序是通过冒泡排序算法实现的&#xff0c;基本实现思路是比较相邻的元素&#xff0c;把小的元素往前移动或把大的元素往后移动&#xff0c;相邻元素两两进行比较&#xff0c;若大元素在小元素前面…

RocketMQ订阅关系不一致和不能消费时如何排查?

订阅关系不一致 调整任意一个实例的订阅关系和另一个保持一致 消费者不能消费消息 它是最常见的问题之一&#xff0c;也是每个消息队列服务都会遇到的问题 1.确认哪个消息未消费。在这时消费者至少需要手机消息id、消息key、消息发送时间段三者之一 2.确认消息是否发送成功…

HashMap使用静态初始化块添加元素

使用静态初始化块&#xff08;Static Initialization Block&#xff09; 示例代码&#xff1a; import java.util.HashMap; import java.util.Map;public class Main {public static void main(String[] args) {// 使用静态初始化块批量添加元素Map<String, Integer> h…