EXCEL中不错的xlookup函数

excel中一般要经常用vlookup函数,但其实经常麻烦要正序,从左边到右边,还要数列,挺麻烦的,xlookup的函数还不错,有个不错的一套视频介绍,B站的,地址是:

XLOOKUP函数基础用法,也就比VLOOKUP好用“亿”点点_哔哩哔哩_bilibili
比如上面的例子中,要根据工号找出姓名,则是
=xlookup(I7,B6:B14,C6:C14),好处就是不用vlookup那样数列了,十分方便,具体可以看这个UP主的不错的教程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/688453.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Eliminating Domain Bias for Federated Learning in Representation Space【文笔可参考】

文章及作者信息: NIPS2023 Jianqing Zhang 上海交通大学 之前中的NeurIPS23论文刚今天传到arxiv上,这次我把federated learning的每一轮看成是一次bi-directional knowledge transfer过程,提出了一种促进server和client之间bi-direction…

Day4. 文件IO的基本概念和读写

温习&#xff1a; 文件的拷贝&#xff08;单个字符&#xff09;(fgetc/fputc) #include <stdio.h>int main(void) {FILE* fp NULL;FILE* fq NULL;char ch 0;fp fopen("str.txt","r");if (fp NULL){perror("file to fopen!");retur…

网络模型及传输基本流程

1.OSI 七层模型 OSI &#xff08; Open System Interconnection &#xff0c;开放系统互连&#xff09;七层网络模型称为开放式系统互联参考模型&#xff0c;是一个逻辑上的定义和规范; 把网络从逻辑上分为了 7 层 . 每一层都有相关、相对应的物理设备&#xff0c;比如路由器…

RCS系统之:冲突解决

在RCS系统中&#xff0c;避免碰撞是至关重要的。以下是一些常见的方法和技术用于避免碰撞&#xff1a; 障碍物检测&#xff1a;机器人可以配备各种传感器&#xff0c;如激光雷达、超声波传感器、摄像头等&#xff0c;用于检测周围的障碍物和环境。通过实时监测周围情况&#xf…

RocketMQ订阅关系不一致和不能消费时如何排查?

订阅关系不一致 调整任意一个实例的订阅关系和另一个保持一致 消费者不能消费消息 它是最常见的问题之一&#xff0c;也是每个消息队列服务都会遇到的问题 1.确认哪个消息未消费。在这时消费者至少需要手机消息id、消息key、消息发送时间段三者之一 2.确认消息是否发送成功…

JVM--- 垃圾收集器详细整理

目录 一、垃圾收集需要考虑的三个事情&#xff1a; 二、垃圾回收针对的区域 三、如何判断对象已死 1.引用计数算法&#xff1a; 2.可达性分析算法 四、引用 五、生存还是死亡&#xff1f; 六、回收方法区 七、垃圾收集算法 1.分代收集理论 2.标记-清除算法 3.标记-复制算…

huggingface库LocalTokenNotFoundError:需要提供token

今天刚开始学习huggingface&#xff0c;跑示例的时候出了不少错&#xff0c;在此记录一下&#xff1a; (gpu) F:\transformer\transformers\examples\pytorch\image-classification>.\run.bat Traceback (most recent call last):File "F:\transformer\transformers\e…

一站式安装对应显卡版本的cuda和torch(windows)

前言 一年前&#xff0c;安装过cuda&#xff0c;觉得并不难&#xff0c;就没有记录。 这次安装还算顺利&#xff0c;就是在找资料的时候&#xff0c;浪费了不少时间 这次就记录下来&#xff0c;方便以后再次安装 总结安装程序&#xff1a; 1、安装python环境 2、安装VS的C环境&…

【机构vip教程】Unittest(1):unittest单元测试框架简介

unittest单元测试框架简介 unittest是python内置的单元测试框架&#xff0c;具备编写用例、组 织用例、执行用例、功能&#xff0c;可以结合selenium进行UI自动化测 试&#xff0c;也可以结合appium、requests等模块做其它自动化测试 官方文档&#xff1a;https://docs.pytho…

机试指南:3-4章

文章目录 第3章 排序与查找(一) 排序1.sort函数&#xff1a;sort(first,last,comp)2.自定义比较规则3.C函数重载&#xff1a;同一个函数名&#xff0c;有不同的参数列表4.机试考试最重要的事情&#xff1a;能把你曾经做过的题目&#xff0c;满分地做出来5.例题例题1&#xff1a…

kettle--JavaScript脚本日期使用

输入日期为20240216&#xff0c;运行如下代码&#xff0c;结果为true var reportdate parent_job.getVariable("v_reportdate"); var date_type parent_job.getVariable("v_date_type"); var reportdate_freportdate.substr(0,4) "/" report…

RK3399平台开发系列讲解(USB篇)U盘等存储类设备

🚀返回专栏总目录 文章目录 一、什么是U盘等存储类设备二、U盘设备传输数据结构三、U盘识别需要打开的宏沉淀、分享、成长,让自己和他人都能有所收获!😄 📢介绍U盘等存储类设备。 一、什么是U盘等存储类设备 USB Mass Storage Device Class(USB MSC/UMS) USB大容量存…

springboot199疫情打卡健康评测系统

疫情打卡健康评测系统设计与实现 摘 要 当下&#xff0c;如果还依然使用纸质文档来记录并且管理相关信息&#xff0c;可能会出现很多问题&#xff0c;比如原始文件的丢失&#xff0c;因为采用纸质文档&#xff0c;很容易受潮或者怕火&#xff0c;不容易备份&#xff0c;需要花…

《剑指 Offer》专项突破 - 面试题 43 : 在完全二叉树中添加节点(两种方法 + C++ 实现)

目录 前言 方法一 方法二 前言 题目链接&#xff1a;LCR 043. 完全二叉树插入器 - 力扣&#xff08;LeetCode&#xff09; 题目&#xff1a; 在完全二叉树中&#xff0c;除最后一层之外其他层的节点都是满的&#xff08;第 n 层有 个节点&#xff09;。最后一层的节点可能…

IO进程-day1

1、使用fgets统计给定文件的行数。 #include<stdio.h> #include<string.h> #include<stdlib.h>int main(int argc, const char *argv[]) {if(argc ! 2){printf("inout file error\n");printf("usage:./a.out srcfile destfile\n");ret…

在UE5中使用体积材质

在平时使用UE的材质设置时&#xff0c;经常会看见Material Domain Volume类型&#xff0c;但是却很少使用。其实该类型可以配合体积雾使用&#xff0c;并制作体积效果以弥补自带雾参数的不足。 操作流程 首先找到场景中的ExponentialHeightFog组件&#xff0c;开启体积雾Volu…

【论文精读】SimCLR2

摘要 本文提出了一个半监督学习框架&#xff0c;包括三个步骤&#xff1a;无监督或自监督的预训练&#xff1b;有监督微调&#xff1b;使用未标记数据进行蒸馏。具体改进有&#xff1a; 发现在半监督学习&#xff08;无监督预训练有监督微调&#xff09;中&#xff0c;对于较大…

Linux第61步_“buildroot”构建根文件系统第3步_烧写根文件系统到EMMC中_并完善开发板配置

烧录到EMMC测试&#xff0c;还需进一步测试和配置。 1、删除rootfs”目录下的“rootfs.tar”压缩包 打开第1个终端 输入“ls回车” 输入“cd linux/回车”&#xff0c;切换到“linux”目录 输入“ls回车”&#xff0c;列出“linux”目录下的文件和文件夹 输入“cd nfs/回…

数据结构与算法java—算法时间复杂度计算

课程安排 一、数据结构与算法的重要性 数据结构&#xff1a;数据与数据间的关系 1.1、数据结构的研究内容 数据结构&#xff1a;研究非数值计算的程序设计中计算机的操作对象以及它们之间的关系和操作的学科。 非数值计算问题中的数学模型不是数学方程&#xff0c;而是诸如…

线程安全性的原理分析学习

初步认识Volatile 一段代码引发的思考 下面这段代码&#xff0c;演示了一个使用volatile以及没使用volatile这个关键字&#xff0c;对于变量更新的影响 package com.sp.demo;/*** author : lssffy* Description :* date : 2024/2/16 18:42*/ public class VolatileDemo {publi…