【详解】图的概念和存储结构(邻接矩阵,邻接表)

目录

图的基本概念:

图的存储结构

邻接矩阵(GraphByMatrix):

基本参数:

初始化:

获取顶点元素在其数组中的下标 :

添加边和权重:

获取顶点的度:

打印图:

邻接表(GraphByNode):

基本参数:

注意:

初始化:

获取顶点元素在其数组中的下标 :

添加边和权重:

获取顶点的度:

打印图:

结语:


图的基本概念:

图是由顶点集合及顶点间的关系组成的一种数据结构:G = (V, E)。

其中:

(1)顶点集合V = {x|x属于某个数据对象集}是有穷非空集合。

(2)E = {(x,y)|x,y属于V}或者E = {|x,y属于V && Path(x, y)}是顶点间关系的有穷集合,也叫做边的集合。

(3)(x, y)表示x到y的一条双向通路,即(x, y)是无方向的;Path表示从x到y的一条单向通路,即Path 是有方向的。

顶点和边:

图中结点称为顶点,第i个顶点记作vi。两个顶点vi和vj相关联称作顶点vi和顶点vj之间有一条边, 图中的第k条边记作ek,ek = (vi,vj)或。

有向图和无向图:

在有向图中,顶点对是有序的,顶点对称为顶点x到顶点y的一条边(弧),和是两条不同的边,比如下图G3和G4为有向图。在无向图中,顶点对(x, y)是无序的,顶点对(x,y) 称为顶点x和顶点y相关联的一条边,这条边没有特定方向,(x, y)和(y,x)是同一条边,比如下图G1和G2为 无向图。注意:无向边(x, y)等于有向边和。

例如下图:G1和G2位无向图,G3和G4为有向图。

完全图:

在有n个顶点的无向图中,若有n * (n-1)/2条边,即任意两个顶点之间有且仅有一条边,则称此图为 无向完全图,比如上图G1;在n个顶点的有向图中,若有n * (n-1)条边,即任意两个顶点之间有且仅有方向 相反的边,则称此图为有向完全图,比如上图G4。 

顶点的度:

顶点v的度是指与它相关联的边的条数,记作deg(v)。在有向图中,顶点的度等于该顶点的入度与 出度之和,其中顶点v的入度是以v为终点的有向边的条数,记作indev(v);顶点v的出度是以v为起始点的有向 边的条数,记作outdev(v)。因此:dev(v) = indev(v) + outdev(v)。注意:对于无向图,顶点的度等于该顶 点的入度和出度,即dev(v) = indev(v) = outdev(v)。

路径:

在图G = (V, E)中,若从顶点vi出发有一组边使其可到达顶点vj,则称顶点vi到顶点vj的顶点序列为从顶点vi到顶点vj的路径。

路径长度:

对于不带权的图,一条路径的路径长度是指该路径上的边的条数;对于带权的图,一条路径的路 径长度是指该路径上各个边权值的总和。

简单路径与回路:

若路径上各顶点v1,v2,v3,…,vm均不重复,则称这样的路径为简单路径。若路 径上 第一个顶点v1和最后一个顶点vm重合,则称这样的路径为回路或环。例如下图:

子图:

设图G = {V, E}和图G1 = {V1,E1},若V1属于V且E1属于E,则称G1是G的子图。如下图:

连通图: 

在无向图中,若从顶点v1到顶点v2有路径,则称顶点v1与顶点v2是连通的。如果图中任意一 对顶点 都是连通的,则称此图为连通图。

强连通图:

在有向图中,若在每一对顶点vi和vj之间都存在一条从vi到vj的路径,也存在一条从vj到 vi的路 径,则称此图是强连通图。

生成树:

一个连通图的最小连通子图称作该图的生成树。有n个顶点的连通图的生成树有n个顶点和n-1条 边。

图的存储结构

因为图中既有节点,又有边(节点与节点之间的关系),因此,在图的存储中,只需要保存:节点和边关系即可。故图的存储结构有两种。1.邻接矩阵 2.邻接表。其中最常用的是邻接矩阵。

邻接矩阵(GraphByMatrix):

因为节点与节点之间的关系就是连通与否,即为0或者1,因此邻接矩阵(二维数组)即是:先用一个数组将定 点保存,然后采用矩阵来表示节点与节点之间的关系。

注意:

1. 无向图的邻接矩阵是对称的,第i行(列)元素之和,就是顶点i的度。有向图的邻接矩阵则不一定是对称的,第i行(列)元素之后就是顶点i 的出(入)度。

2. 如果边带有权值,并且两个节点之间是连通的,上图中的边的关系就用权值代替,如果两个顶点不通,则使用无穷大代替。

如下图:

3. 用邻接矩阵存储图的优点是能够快速知道两个顶点是否连通,缺陷是如果顶点比较多,边比较少时,矩 阵中存储了大量的0成为系数矩阵,比较浪费空间,并且要求两个节点之间的路径不是很好求。 

实现GraphByMatrix类,arrayv用来存放顶点,matrix来存放边,isDirect用来判断图是否是有向图。根据上面给出的注意2要用fill将数组初始化为无穷大。

基本参数:

public class GraphByMatrix {private char[] arrayV;//存放顶点·private int[][] matrix;//存放边private boolean isDirect;//是否是有向图public GraphByMatrix(int size,boolean isDirect){arrayV = new char[size];matrix = new int[size][size];for(int i = 0;i < size;i++){Arrays.fill(matrix[i],Integer.MAX_VALUE);}this.isDirect = isDirect;}
}

初始化:

初始化arrayV顶点数组。

public void initArrayV(char[] array){for(int i = 0;i < array.length;i++){arrayV[i] = array[i];}}

获取顶点元素在其数组中的下标 :

public int getIndexOfV(char v){for(int i = 0;i < arrayV.length;i++){if(v == arrayV[i]){return i;}}return -1;}

添加边和权重:

先查找出两个顶点在,顶点数组中的位置,特别注意:无向图的话,两边都要设置,因为有向图每条边都是单独的。

public void addEdge(char v1,char v2,int weight){int index1 = getIndexOfV(v1);int index2 = getIndexOfV(v2);matrix[index1][index2] = weight;if(!isDirect){matrix[index2][index1] = weight;}}

效果如下:

这是一个无向图,将边的关系抽象为二维数组,其中2^31-1为未赋予权重。

 

获取顶点的度:

1、现在顶点数组 arrayV 中找到顶点的下标。

2、无向图只需要计算出度就好了。

3、如果是有向图,有向图的度 = 入度 +出度。

4、此时的count中存储的就是顶点V的度。

第二个for循环是沿着y轴遍历。 

public int getDevOfV(char v){int indexV = getIndexOfV(v);int count = 0;for(int i = 0;i < arrayV.length;i++){if(matrix[indexV][i] != Integer.MAX_VALUE){count++;}}if(isDirect){for(int i = 0;i < arrayV.length;i++){if(matrix[i][indexV] != Integer.MAX_VALUE){count++;}}}return count;}

测试如下:

我们add了A的两条边故打印2.

 

打印图:

为了使打印效果更好我们将2^31-1打印为无穷大。

public void printGraph(){for(int i = 0;i < arrayV.length;i++){System.out.print(arrayV[i] + " ");}System.out.println();for(int i = 0;i < matrix.length;i++){for(int j = 0;j < matrix[i].length;j++){if(matrix[i][j] == Integer.MAX_VALUE) {System.out.print("∞ ");}else {System.out.print(matrix[i][j]+" ");}}System.out.println();}}

效果如下:

邻接表(GraphByNode):

邻接表:使用数组表示顶点的集合,使用链表表示边的关系。

1. 无向图邻接表存储

注意:无向图中同一条边在邻接表中出现了两次。如果想知道顶点vi的度,只需要知道顶点vi边链表集 合中结点的数目即可。

2.有向图邻接表存储:

注意:有向图中每条边在邻接表中只出现一次,与顶点vi对应的邻接表所含结点的个数,就是该顶点的出度,也称出度表,要得到vi顶点的入度,必须检测其他所有顶点对应的边链表,看有多少边顶点的dst取值是i。

基本参数:

需要设置一个静态内部类Node结点,结点要能存储起始,终点,权重和下一结点的数据。运用数组加链表的存储方式。

public class GraphByNode {static class Node{public int src;//起始下标public int dest;//重点下标public int weight;//权重public Node next;public Node(int src,int dest,int weight){this.src = src;this.dest = dest;this.weight = weight;}}private ArrayList<Node> edgeList;private char[] arrayV;//存放顶点private boolean isDirect;//是否是有向图public GraphByNode(int size,boolean isDirect){arrayV = new char[size];edgeList = new ArrayList<>(size);for(int i = 0;i < size;i++){edgeList.add(null);}this.isDirect = isDirect;}
}
注意:

new ArrayList<>(size)里面直接加参数是不能初始化list大小的例如:

 

我们可以看到size的大小为0这样在进行操作时就会报错。 

解决方法如下:

这样就成功解决了💯。 

初始化:

public void initArrayV(char[] array){for(int i = 0;i < array.length;i++){arrayV[i] = array[i];}}

获取顶点元素在其数组中的下标 :

public int getIndexOfV(char v){for(int i = 0;i < arrayV.length;i++){if(arrayV[i] == v){return i;}}return -1;}

添加边和权重:

为了使代码更加整洁在addEdge里面再调用addEdgeChild方法。注意区分有向图和无向图的区别,如果要添加的边已经再链表里了直接return退出添加失败而不是大多数的覆盖,用头插法插入数据。

public void addEdge(char v1,char v2,int weight){int src = getIndexOfV(v1);int dest = getIndexOfV(v2);addEdgeChild(src,dest,weight);if(!isDirect){addEdgeChild(dest,src,weight);}}private void addEdgeChild(int src,int dest,int weight){Node cur = edgeList.get(src);while(cur != null){if(cur.dest == dest){return;}cur = cur.next;}//头插法Node node = new Node(src,dest,weight);node.next = edgeList.get(src);edgeList.set(src,node);}

效果如下:

获取顶点的度:

1、现在顶点数组 arrayV 中找到顶点的下标。

2、如果是无向图,只需要遍历链表的节点个数。

3、如果是有向图,必须检测其他所有顶点对应的边链表,看有多少边顶点的dst取值是i        //有向图也就一张表。

使用continue来跳过当前自己的顶点链表防止有重复。

public int getDevOfV(char v){int indexV = getIndexOfV(v);int count = 0;Node cur = edgeList.get(indexV);while(cur != null){count++;cur = cur.next;}if(isDirect){int dest = indexV;for(int src = 0;src < arrayV.length;src++){if(src == dest){continue;}else{Node pCur = edgeList.get(src);while(pCur != null){if(pCur.dest == dest){count++;}pCur = pCur.next;}}}}return count;}

效果如下:

打印图:

 public void printGraph(){for(int i = 0;i < arrayV.length;i++){System.out.print(arrayV[i] + "->");Node cur = edgeList.get(i);while(cur != null){System.out.print(cur.dest + "->");cur = cur.next;}System.out.println("null");}}

效果如下:

结语:

其实写博客不仅仅是为了教大家,同时这也有利于我巩固自己的知识点,和一个学习的总结,由于作者水平有限,对文章有任何问题的还请指出,接受大家的批评,让我改进,如果大家有所收获的话还请不要吝啬你们的点赞收藏和关注,这可以激励我写出更加优秀的文章。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/688260.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity所有关于旋转的方法详解

前言&#xff1a;欧拉角和四元数的简单描述 我们在Inspector面板上看到的rotation其实是欧拉角&#xff0c; 我们将Inspector面板设置成Debug模式&#xff0c;此时看到的local Rotation才是四元数。 Unity中的欧拉旋转是按照Z-X-Y顺规执行的旋转&#xff0c;一组欧拉旋转过程中…

[力扣 Hot100]Day29 删除链表的倒数第 N 个结点

题目描述 给你一个链表&#xff0c;删除链表的倒数第 n 个结点&#xff0c;并且返回链表的头结点。 出处 思路 两个指针间隔n&#xff0c;一趟遍历解决。 代码 class Solution { public:ListNode* removeNthFromEnd(ListNode* head, int n) {ListNode* phead;ListNode* …

【数据库】Mysql索引

1、什么是索引&#xff1f;为什么要用索引&#xff1f; 1.1、索引的含义 数据库索引&#xff0c;是数据库管理系统中一个排序的数据结构&#xff0c;以协助快速查询&#xff0c;更新数据库中表的数据。索引的实现通常使用B树和变种的B树&#xff08;MySQL常用的索引就是B树&am…

跟着pink老师前端入门教程(JavaScript)-day03

四、常量 概念&#xff1a;使用 const 声明的变量称为“常量”。 使用场景&#xff1a;当某个变量永远不会改变的时候&#xff0c;就可以使用 const 来声明&#xff0c;而不是let。 命名规范&#xff1a;和变量一致 常量使用&#xff1a; 注意&#xff1a;常量不允许重新…

数据库索引面试的相关问题

查看索引的执行计划 索引失效的情况 1、索引列上做了计算&#xff0c;函数&#xff0c;类型转换等操作。索引失效是因为查询过程需要扫描整个索引并回表。代价高于直接全表扫描。 Like匹配使用了前缀匹配符“%abc” 字符串不加引号导致类型转换。 原因&#xff1a; 常见索…

阿里云香港轻量应用服务器网络线路cn2?

阿里云香港轻量应用服务器是什么线路&#xff1f;不是cn2。 阿里云香港轻量服务器是cn2吗&#xff1f;香港轻量服务器不是cn2。阿腾云atengyun.com正好有一台阿里云轻量应用服务器&#xff0c;通过mtr traceroute测试了一下&#xff0c;最后一跳是202.97开头的ip&#xff0c;1…

酒店内部服务App开发常用的代码分享!

随着移动互联网的迅猛发展&#xff0c;智能手机已经成为人们生活中不可或缺的一部分&#xff0c;酒店作为服务行业的重要代表&#xff0c;为了提升客户体验、提高服务效率&#xff0c;纷纷开始开发内部服务App。 这些App不仅可以帮助酒店实现内部管理的便捷化&#xff0c;还能…

二叉树(4)——链式二叉树

1 二叉树的概念 二叉树是&#xff1a; 空树非空&#xff1a;根节点&#xff0c;根节点的左子树、根节点的右子树组成的。 二叉树定义是递归式的&#xff0c;因此后序基本操作中基本都是按照该概念实现的。 2 二叉树的遍历 2.1 前序、中序以及后序遍历 学习二叉树结构&#xf…

【C++笔记】第一阶段:C++基础入门

C基础入门 1 C初识1.1 创建一个C程序1.1.1 创建项目1.1.2 创建文件1.1.3 编写代码1.1.4 运行程序 1.2 注释1.3 变量1.4 常量1.5 关键字1.6 标识符命名规则 2 数据类型2.1 整型2.2 sizeof关键字2.3 实型&#xff08;浮点型&#xff09;2.4 字符型2.5 转义字符2.6 字符串型2.7 布…

Github 2024-02-17 开源项目日报 Top10

根据Github Trendings的统计&#xff0c;今日(2024-02-17统计)共有10个项目上榜。根据开发语言中项目的数量&#xff0c;汇总情况如下&#xff1a; 开发语言项目数量Python项目4TypeScript项目3Rust项目2Jupyter Notebook项目1PowerShell项目1JavaScript项目1 Black&#xff…

单片机学习笔记---AD模数转换DA数模转换

目录 AD模数转换 XPT2046.c XPT2046.h main.c DA数模转换 main.c 上一篇博客讲了AD/DA转换的工作原理&#xff0c;也介绍了运算放大器的工作原理&#xff0c;这节开始代码演示&#xff01; AD模数转换 新创建一个工程&#xff1a;AD模数转换 第一个工程将用到LCD1602和…

相机图像质量研究(34)常见问题总结:图像处理对成像的影响--拖影

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结&#xff1a;光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结&#xff1a;光学结构对成…

力扣 第 124 场双周赛 解题报告 | 珂学家 | 非常规区间合并

前言 整体评价 T4的dp解法没想到&#xff0c;走了一条"不归路", 这个区间合并解很特殊&#xff0c;它是带状态的&#xff0c;而且最终的正解也是基于WA的case&#xff0c;慢慢理清的。 真心不容易&#xff0c;太难了。 T1. 相同分数的最大操作数目 I 思路: 模拟 c…

吴恩达机器学习全课程笔记第二篇

目录 前言 P31-P33 logistics &#xff08;逻辑&#xff09;回归 决策边界 P34-P36 逻辑回归的代价函数 梯度下降的实现 P37-P41 过拟合问题 正则化代价函数 正则化线性回归 正则化logistics回归 前言 这是吴恩达机器学习笔记的第二篇&#xff0c;第一篇笔记请见&…

day32打卡

day32打卡 122. 买卖股票的最佳时机 II 解法&#xff0c;贪心&#xff1a;局部&#xff0c;收集每天的正利润-》整体&#xff0c;获取最大利润 从第0天到第3天&#xff0c;利润为&#xff1a;price[3] - price[0]&#xff0c;也可以是(price[3] - price[2]) (price[2] - pr…

160基于matlab的负熵和峭度信号的盲分离

基于matlab的负熵和峭度信号的盲分离。基于峭度的FastICA算法的收敛速度要快&#xff0c;迭代次数比基于负熵的FastICA算法少四倍以上。SMSE随信噪比增大两种判据下的FastICA算法都逐渐变小&#xff0c;但是基于峭度的算法的SMSE更小&#xff0c;因此基于峭度的FastICA算法性能…

论文精读--对比学习论文综述

InstDisc 提出了个体判别任务&#xff0c;而且利用这个代理任务与NCE Loss去做对比学习从而得到了不错的无监督表征学习的结果&#xff1b;同时提出了别的数据结构——Memory Bank来存储大量负样本&#xff1b;解决如何对特征进行动量式的更新 翻译&#xff1a; 有监督学习的…

C++并发编程 -3.同步并发操作

本文介绍如何使用条件变量控制并发的同步操作、C 并发三剑客&#xff0c;函数式编程 一.条件变量 1.概念 C条件变量&#xff08;condition variable&#xff09;是一种多线程编程中常用的同步机制&#xff0c;用于线程间的通信和协调。它允许一个或多个线程等待某个条件的发生…

爬虫之正则表达式

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 概念&#xff1a; 正则表达式(regular expression)描述了一种字符串匹配的模式&#xff08;pattern&#xff09;&#xff0c;正则匹配是一个模糊的匹配(不是精确匹配) 如下四个方法经常使用&#xff1a; match()search()f…

基于Java+SpringBoot+vue+elementui 实现即时通讯管理系统

目录 系统简介效果图源码结构试用地址源码下载地址技术交流 博主介绍&#xff1a; 计算机科班人&#xff0c;全栈工程师&#xff0c;掌握C、C#、Java、Python、Android等主流编程语言&#xff0c;同时也熟练掌握mysql、oracle、sqlserver等主流数据库&#xff0c;能够为大家提供…