今天分享的是人工智能系列深度研究报告:《人工智能专题:2024亚太地区生成式人工智能应用与监管报告》。
(报告出品方:德勤)
报告共计:20页
来源:人工智能学派
知识更新:了解传统AI与生成式AI
传统AI是指可以自动处理预定义输入的系统。此类AI系统 能够从训练数据中获取知识,并利用这些知识做出决策或 预测。例如,许多企业利用AI聊天机器人提供精简高效的客 户支持。传统AI聊天机器人在处理常见问题方面尤其有效。 凭借内部搭建的知识库,其可针对常见问题提供准确一致 的回复并进行用户意图预测。
生成式AI可以编写文本、生成代码、制作音频和图像,其水 平与人类不相上下,甚至超越人类。例如,生成式AI工具包 括可用于生成书面文本(如营销文案、软件代码等)和图像 等内容的LLM。生成式AI模型具有生成连贯文本和超逼真 图像的能力,其可采用以前只能通过人类的思维、努力和创 造力才能实现的方式生成数据。 传统AI和生成式AI的不同功能驱动了不同用例。就金融服 务业而言,传统AI可以用于开展预测分析或检测可疑交易, 而生成式AI可以加速完成从交易和研究到通过生成相关报 告为合规职能提供关键支持等任务,本报告将对此作进一 步阐述。
传统AI是指根据预定义指令或策略执行特定任务的系统。生成式AI是一种能够根据用户提示创建新内容的人工智能。
生成式人工智能相关风险
2022年发布的《人工智能在金融服务业的可靠应用》报告中, 探讨了亚太地区监管机构希望通过AI监管原则解决的常见风险 要素:透明度、问责制、公平性、稳健性、隐私和数据安全。目前 此类风险和担忧依然存在,而生成式AI的兴起又给市场带来了 新的风险:
• 缺乏透明度:考虑到生成式AI模型的复杂性及其所涉信息 的专有性,人们普遍认为生成式AI缺乏透明度。此外,在衡量 或评估生成式AI模型的透明度方面缺乏标准化的工具和方法, 这可能导致在比较不同模型和追踪长期进展时变得困难。
• 歧视和偏见:生成式AI可能会将一些偏见与训练数据中的模 式形成关联,从而生成歧视性或误导性内容。
• 缺乏准确性和产生错误观念:生成式A I可能会利用不完 整、不准确或有偏见的数据生成不准确或有误导性内容,或 者干脆生成虚构事实。生成式AI模型没有固有的“客观真理 (objective truth)”,可能会生成错误甚至有害的内容和观点。
• 知识产权和版权问题:生成式AI模型可能会以受版权保护的 材料为基础进行训练,从而生成与受版权保护的材料非常相 似的内容。生成式AI模型还可能用于制造假冒或盗版商品,侵 犯知识产权。
• 欺诈:生成式AI可能生成深度伪造和合成数据,这些数据可以 用于实施欺诈、传播错误信息或造成系统漏洞。
亚太地区人工智能监管措施
生成式AI的出现迫使亚太地区政策制定机构和监管机构重新评 估之前实施的AI框架是否同样适用于降低新兴技术风险。某些 监管机构已经实施AI指引和计划,为企业和行业提供最佳实践 建议。下表(图2)列举了亚太司法管辖区在开展AI监管或为AI风 险管理提供建议方面所采取的措施,包括制定AI原则、提供指 导和工具、出台立法以及将AI应用纳入国家战略:
• AI原则:AI原则为有效管理与各行业使用AI相关风险提供了指 引。例如,欧盟以AI原则为入手点开展AI监管以及出台立法。值 得注意的是,某些选择针对AI风险出台立法或开展监管的司法 管辖区也推出了AI原则。举例而言,中国大陆在对AI应用进行 立法的同时,国家新一代人工智能治理专业委员会发布了《新 一代人工智能治理原则——发展负责任的人工智能》。
• 指导和工具:指导和工具通常用于支持AI原则的实施。以新加 坡为例,由新加坡金融管理局领导的Veritas联盟发布了五份 白皮书,阐述了公平、道德、负责和透明(FEAT)原则的评估 方法。为推动金融机构加快采用FEAT方法和原则,联盟开发了 Veritas Toolkit 2.0版。与1.0版相比,2.0版改进了公平原则评 估方法,并纳入了道德、负责和透明原则评估方法。2022年5 月,资讯通信媒体发展局和个人数据保护委员会推出全球首 个AI治理测试框架和工具包——A.I. Verify,适用于旨在以客 观和可验证的方式展示负责任的AI的企业。
• 立法:韩国、中国大陆、菲律宾和越南等司法管辖区采取了针 对保险业出台AI专项立法的措施,其中中国大陆和越南已通过 AI专项立法。
• 国家战略:泰国、印度尼西亚、日本、中国大陆和马来西亚等许 多亚太司法管辖区已将AI确定为战略重点,并制定了促进可信 AI应用的国家战略,但是某些司法管辖区尚未在实施战略或向 业界提供结构化框架方面取得进展。
报告共计:20页
来源:人工智能学派